85Sr, 103Ru, 134Cs ## Analysis of the Direct Contamination Pathway of 85Sr, 103Ru and 134Cs in Soybean , , , , , , 150 85Sr, 103Ru, 134Cs . 가 가 가 가 0.93 ⁸⁵Sr ¹⁰³Ru 0.14 15.2%, ¹³⁴Cs가 9.9 41.9% ## **Abstract** A solution containing ⁸⁵Sr, ¹⁰³Ru and ¹³⁴Cs was sprayed to the aerial part of the soybean plant in a greenhouse at 6 different times before harvest and the direct contamination pathway of the radionuclide analyzed. Plant interception factor showed little difference among radionuclides. The maximum value was 0.93, which was observed at the middle growth stage. Translocation factors of ⁸⁵Sr, ¹⁰³Ru and ¹³⁴Cs in the soybean seed at harvest were in the range of 4.5×10^{-5} 2.5×10^{-3} , 6.0×10^{-5} 2.3×10^{-4} and 4.5×10^{-3} 3.0×10^{-1} , respectively. They were highest at the 3rd application for ⁸⁵Sr and ¹³⁴Cs and at the 2nd application for ¹⁰³Ru. Translocation factors of ⁸⁵Sr and ¹⁰³Ru in the soybean shell tended to increase with decreasing time interval between application and harvest but that of ¹³⁴Cs was highest at the 2nd application. The fractions of the initial deposition that remained in the soybean plant at harvest were in the range of 0.14 15.2% for ⁸⁵Sr and ¹⁰³Ru, 9.9 41.9% for ¹³⁴Cs. These results can be utilized for predicting the radionuclide concentration in mature soybean plant and deciding countermeasures when an accidental deposition of the radionuclides occurs during the growing season of soybean. 1. | | | 가 | | | | | | 가 | |----|--|---|------|---|----------|-------|------|---| | | | | | | (food ch | nain) | | | | | | | | | | 가 | | | | | | | | 가 | | | | | | | | | 가 | | | | | | | | | 가 | | | | | | | | | | | | | | | | | | | 1 3) | | | | | | | | | | | | | | 가 | | | | | | 가 | | | | | | | | | | 가 . | | 1950 |) | | | 4 6) | | | | | | | | | 7) | , | ⁸⁵ Sr, ¹⁰³ Ru, ¹³⁴ Cs | | | | | | | | | | , | | | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | 2. | | | | | | | | | | 가. | | | | | | | | | 2000 5 25 . 가 , , 가 60cm, 60cm, 100cm 1.3m 2 2 3 . RI ⁸⁵Sr, ¹⁰³Ru, ¹³⁴Cs (2000 10 2 0.005M HCl ``` ml 37.6, 37.7, 6.1 KBq) 가 , , 90cm, 90cm, 130cm 가 50~ 80cm 1 31 , 14 19ml, 15 . 6 19 ,7 10 ,7 28 ,8 14 ,8 29 ,9 15 (105 ,84 ,66 , 49 , 34 , 17) . 3 3 5 5.4 7.2 30cm 29) . 5 가 3 2 10 2 2 3 Ge ã-spectrometry hardware software EG&G ORTEC 0.5 2 (I) 3 2 2 (Bq) I = (Bq) (T) ``` $T = \frac{ \begin{array}{c} (Bq/plant) \\ \hline x \ 100 \\ \hline (Bq/plant) \end{array} }$ 3. Fig. 1. Interception factors of the radionuclides by the soybean plant at different growth stages. Fig. 2. Relationship between leaf vegetation density and interception factor in the soybean plant. Fig. 3. Translocation factors of the radionuclides in the soybean seed at harvest Fig. 4. Translocation factors of the radionuclides in the soybean shell at harvest ``` ⁸⁵Sr, ¹⁰³Ru, ¹³⁴Cs (2.5 \times 10^{3}, 6.0 \times 10^{-5} 2.3 \times 10^{-4}, 4.5 \times 10^{-3} 3.0 \times 10^{-5}) ¹³⁴Cs 10-1 Cs>Sr>Ru 3). ⁸⁵Sr (^{103}Ru 3 가 가 가 (7 28) ¹³⁴Cs가 2 (7 10) 가 67 가 ¹⁰³Ru 가 ^{134}Cs 가 ^{85}Sr 가 ^{103}Ru 가 ^{85}Sr ^{103}Ru 가 가 가 가 가 가 ¹³⁴Cs 2 가 3 ¹³⁴Cs 85Sr ^{103}Ru 가 가 ``` ``` ¹³⁴Cs가 4 가 ¹⁰³Ru 600 가 1 3 가 ⁸⁵Sr Cs>Sr>Ru 가 가 가 ^{85}Sr 가 가 10~ 1000) 1 ^{85}Sr (¹⁰³Ru ¹³⁴Cs 가 가 3 가 가 가 ¹³⁴Cs 66) 가 3 ¹³⁴Cs가 가 ¹³⁴Cs 0.14 \sim 14.5\% 5 (34) () 2, 3 가 66~94% 가 57~69% 가 ``` Table 1. Percent of initial deposition that remained in the soybean plant at harvest. | Date of RI application | Days to
Harvest | Percent of initial deposition (%) * | | | | |------------------------|--------------------|-------------------------------------|--------|--------|--| | | | Sr-85 | Ru-103 | Cs-134 | | | June 19 | 105 | 0.30 | 0.14 | 9.92 | | | July 10 | 84 | 0.61 | 0.89 | 37.19 | | | July 28 | 66 | 0.89 | 0.89 | 41.93 | | | Aug. 14 | 49 | 0.53 | 1.11 | 29.83 | | | Aug.29 | 34 | 1.20 | 2.78 | 19.75 | | | Sep. 15 | 17 | 6.96 | 14.53 | 14.83 | | ^{*} Data for total defoliation Table 2. Effect of the rain simulation on the activity remaining in the mature soybean plant. | Date of RI application | Rain
simulation | Percent of initial deposition (%) | | | | |------------------------|--------------------|-----------------------------------|--------|--------|--| | | | Sr-85 | Ru-103 | Cs-134 | | | Aug. 29 | Yes | 1.20 | 2.78 | 19.75 | | | Aug. 29 | No | 20.32 | 20.25 | 57.80 | | Table 3. Effect of the rain simulation on the seed translocation in the mature soybean plant. | Date of RI application | Rain
simulation | Translocation factors | | | | |------------------------|--------------------|-----------------------|--------------------------------|-------------------------|--| | | | Sr-85 | Ru-103 | Cs-134 | | | Aug. 29 | Yes | 5.35×10^{-5} | 6.01 x 10 ⁻⁵ | 1.15×10^{-1} | | | Aug. 29 | No | 1.38×10^{-4} | 1.91 × 10 ⁻⁴ | 2.65 × 10 ⁻¹ | | Table 4 Effect of the rain simulation on the activity distribution in the mature soybean plant. | Date of RI application | Rain
simulation | Percent distribution in seeds (%) | | | | |------------------------|--------------------|-----------------------------------|-------------------------|------------------------|--| | | | Sr-85 | Ru-103 | Cs-134 | | | Aug. 29 | Yes | 3.52×10 ⁻¹ | 1.88 × 10 ⁻¹ | 5.70 × 10 ¹ | | | Aug. 29 | No | 6.08 × 10 ⁻² | 8.47 × 10 ⁻² | 4.48×10^{1} | | Fig. 5. Radionuclide concentrations in the mature soybean seed calculated assuming that the level of deposition is $1 Bq/m^2$. 4. ⁸⁵Sr 103 Ru - 1) IAEA, Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Safety Series No. 57, Vienna (1982). - J. E. Till and H. R. Meyer (Eds.), Radiological Assessment, A Textbook on Environmental Dose Analysis, NUREG/CR-3332, ORNL-5968 (1983). - 3) H. Muller and G. Prohl, ECOSYS-87, A dynamic model for assessing radiological consequences of nuclear accidents, Health Phys. 64, 232-252 (1993). - 4) A. Aarkrog, Radionuclide levels in mature grain related to radiostrontium content and time of direct contamination, Health Phys. 28, pp. 557-562 (1975). - 5) P. J. Coughtrey and M. C. Thorne, Radionuclide Distribution and Transport in Terrestrial Ecosystem A Critical Review of Data, A. A. Balkema, Rotterdam (1983). - 6) J. E. Pinder III, T. G. Ciravolo and J. W. Bowling, The interrelationships among plant biomass, plant surface area and the interception of particulate deposition by grasses, Health Phys. 55, pp. 51-58 (1988). - 7) , , , , , , ⁸⁵Sr, ¹⁰³Ru, ¹³⁴Cs , pp. 219-227 (1998). - 8) I. A. Scotti, Effect of treatment time on the ¹³⁴Cs and ⁸⁵Sr concentrations in grean bean plants, J. Environ. Radioactivity 33, 83-191 (1996).