2001

KSTAR NBI 가

Discharge Characteristics of KSTAR NBI Ion Source According to the Filament Heating Condition

, , , , ,

150

Abstract

The effect of the filament heating condition to the arc discharge characteristics of the KSTAR NBI ion source has been studied. Arc discharge current is increased by FIC(Filament Initial Current) and the uniformity of the arc current after arc discharge is affected by FCR(Filament Current During Arc). Under the 40 sccm of hydrogen gas flow and 80 V of arc voltage, the optimum filament heating conditions are 3300 A ~ 3400 A of FIC and 2850 A ~ 2900 A of FCR. The optimum operation mode of the power supplies has been studied. The optimum operation mode of the arc power supply is CP(Constan Power) mode because the ion saturation current of Langmuir probe is increased with arc power.

1.

	,	,	TFTR, D	-D, JT-60U, JET, ASI	DEX-U, ITER
			가	,	KSTAR(Korea
Superconducting	Tokan	nak Advanced Research)	가	. KSTAR	NBI(Neutral Beam

Injection)	가		2005	8 MW		가 가
3	1			가		[1,2,3]
120 keV, 65 A		80 keV, 40 A		가		,
		가	10^{12} cm ⁻³			가
	bucket	multi-cusp		(CV,	constant	voltage)
	가					가
			pre-io	nization		
			. mtorr			
가						가
		msec				

2.

KSTAR NBI (bucket) 1 26 cm × 64 cm 가 32 cm 32 4.65 kG Nd-Fe cusp 가 1 • 5500 A 5 pre-ionization 가 가 1200 A 3200 A . .

1. KSTAR NBI Fig. 1. Schematic diagram of KSTAR NBI ion source

	Filament P/S	Arc P/S		
Output DC Voltage[V]	15	160		
Output DC Current[A]	3200 CW 5500 for 6 sec	1200 CW		
Current Ripple	2 %	2 %		
Pulse Width	350 sec/30 min	320 sec/30 min		
Current rising time	30 ms	30 msat start1 msduring operating		
Current falling time	30 ms	0.1 msec		
DC 가	inverter	Chopper		

Table 1. Electrical specification of filament P/S and arc P/S

가

2		가	FIC(Filament I	nitial Current)
FCR(Filament Current during Arc)	가			Langmuir
Probe .			vacuum gauge	measurement and
control system (MKS type 146A)		100 sccm	MFC	40, 50, 60
sccm ,		10 ⁻¹ ~	10 ⁵ torr	가 Baratron
gauge		50 V	80 V	10 V

2. 가 Table 2. Conditions of filament heating

Filament Init	ial Current	Filament Current during Arc			
FIC[A]	FIC Time[sec]	FCR[A]	FCR Time[sec]		
3100-3600	18	2600-3200	1-2		

3.

3-1. 가

2 40 sccm 60 V, FIC 7 3400 A , FCR 1 2900, 3000, 3100 A , 1.8 mtorr . FCR FCR , , FCR FCR

1.

FCR

FIC

2. FCR Fig. 2. Discharge Characteristics according at various FCR.

Fig. 3. Discharge characteristics curve according to the filament heating condition

4. 7 Fig. 4. Arc Current according to FCR

5	FIC	3250,	3300,	3350,	3400,	3450	А				
			가					가	, I	FIC	가

Fig. 5. Arc volateg vs. arc current at various filament initial current

Fig. 6. Arc current and ion saturation current of Langmuir probe according to FCR

7. Langmuir Probe Fig. 7. Arc current vs. ion saturation current of Langmuir probe.

Fig. 8. Arc power vs. ion saturation current of Langmuir probe

,

9

9, 10, 11, 12

(CV)

12.5 V, 11.5 V , 20 %

80 V .

,

9.7Fig. 9. Typical discharge curve of the CV mode arc discharge under CV mode filament heating condition.

10 . , 890 A . . 7 890 A . 11

Fig. 10. Typical discharge curve of the CC mode arc discharge under CV mode filament. Heating condition.

Fig. 11. Typical discharge curve of the CC mode arc discharge under CC mode filament heating condition.

12

4

Langmuir probe

Fig. 12. Typical discharge curve of the CC mode arc discharge under CC mode filament heating condition.

4.

5.

가

- [1] M. J. Mantsinen, L. G. Eriksson, V. P. Bhatnagar, G. A. Cotttrell, A. Gondhalekar, C. Gormezano, R Konig, P Lomas, E. Righi, F. G. Rimini, A. C. C. Sips, D. F. H. Start, F. X, Soldner, D. Testa, B. Tubbing and K-D Zastrow, "Anlysis of bulk ion heating with ICRH in JET high-performance plasma", Plasma Phys. Control. Fusion 41 (1999) 843-865
- [2] M. M. Menon, C. C. Tasi, J. H. Whealton, D. E. Schechter, G. C. Barber, S. K. Combs, W. K. Dagenhart, W. L. gardner, H. H. Haselton, N. S. Ponte, P. M. Ryan, W. L. Stirling, and R. E. Wright, "Quasi-steady-state multimegawatt ion source for neutral beam injection", Rev. Sci. Instrum., Vol. 56, No. 2, February 1985
- [3] B. H. Oh, K. R. Kim, and B. H. Choi, "Discharge characteristics of a long pulse ion source for the Korea Superconducting Tokamak Advanced Research neutral beam system", Rev. Sci. Instrum., Vol. 71, No. 2, pp.1~4, February2000
- [4] S. Asano, K. Okuyama, Y. Suzuki, M. Osakabe, Y. Oka, Y. Takeiri and O. kaneko, "Effects of filament position on the arc discharge characteristics of a negative hydrogen ion source for neutral beam injector", Rev. Sci. Instrum., Vol. 70, No. 5, pp. 2338 ~ 2344, May 1999
- [5] Y. Ohara, "Development of high power ion source for fusion(invited)", Rev. Sci. Instrum., Vol. 69, No. 2, pp. 908~913, February 1998