SMART Main Coolant Pump

2000

Dynamic Analysis of the Rotor of SMART Main Coolant Pump

Abstract

A main coolant pump(MCP) is an essential device of the SMART integral reactor and required to be used in high temperature and high pressure working fluid during 10 more years. Therefore, **t** is needed to reflect considerations in the design of MCP structure and component from the early design phase to keep enough stability margin by obtaining the dynamic characteristics of the MCP rotor. Especially, excessive vibration can be escaped by allocating natural frequencies properly from running speeds to get maximum critical speed margin. In this paper, modeling and analysis utilizing FEM and ESDM to optimize the size and configuration of MCP rotor is accomplished.

1.

(MCP) SMART 10

가

가 가

.

.

•

.

MCP

(FEM)[1]

(EDSM)[2]

2.

•

.

MCP

. MCP Fig. 1 Table 1 24 Timoshenko . Table 2, 3 .

Table 1 Elements of the MCP rotor model	
---	--

Element no.	Length(mm)	Outer Dia.(mm)	Inner Dia.(mm)	Temp.(Degree)
1	35	52	20	70
2	33	80	20	70
3	33	80	20	70
4	15	52	20	70
5	75	55	16	70
6	27	55	16	70
7	8	55	16	70
8	87	91	16	70
9	87	91	16	70
10	87	91	16	70
11	87	91	16	70
12	87	91	16	70
13	8	55	16	70
14	27	55	16	70
15	98	55	16	70
16	78	55	16	70
17	62	80	16	70
18	67.5	80	16	70
19	33	49	16	100
20	33	49	16	100
21	124	46	16	100
22	124	46	16	300
23	32	35	16	300
24	30	35	0	300

MCP

가

가

Table 4

/

37.581kg,

1/2

27.639kg 65.300kg

Table 2 Densities of the materials used for the MCP rotor

Material	Density, kg/m ³	Usuage
SUS 321	7840	Shaft, Pump housing, Impeller
Alnico magnet steel	7000	Magnet sensor for rotation
Graphite sintered silicon carbide	2600	Journal wear protection
Copper	8900	Motor wire
Silicon steel	7650	Motor stator core
Water	1000	Working fluid

Table 3 Properties of the MCP rotor shaft

Material	Density kg/m ³	Young's Modulus N/m ²	Shear Modulus, N/m ²	Shear factor
SUS 321	7840	$2*10^{11}$	$8*10^{10}$	0.9

가

.

.

가 2

가

.

.

. Fig. 2 (critical speed map)

(critical speed map) .

 10^6 N/m

가

(Material damping)

Node No.	Mass(kg)	Polar Moment of Inertia, kg-m ²	Parts
1	1.518	-	Speed sensor magnet/Adapter
2	0.199	-	UBR upper retainer
3	0.982	-	UBR rotor
4	0.052	-	UBR lower retainer
6	1.970	0.003605	Motor end ring
7	0.304	0.001530	Copper ring
8	1.015	0.004120	Copper bar
9	2.031	0.005655	Copper bar
10	2.031	0.005655	Copper bar
11	2.031	0.005655	Copper bar
12	2.031	0.005655	Copper bar
13	1.015	0.004120	Copper bar
14	0.304	0.001530	Copper ring
15	1.970	0.003605	Motor end ring
18	6.288	0.017390	Axial bearing
19	0.143	-	LBR retainer
20	1.684	-	UBR rotor
21	1.230	_	LBR retainer
24	1.333	0.008102	Impeller
25	0.641	-	Impeller head

Table 4 Added properties to each node of the MCP rotor model

Fig. 2 Undamped critical speed diagram by changing the bearing support stiffness

Fig. 3 Campbell diagram of the MCP rotor

Hole dia.(n	ım)	12	16	20	24	28	32
Shaft mass	(kg)	38.56	37.58	36.33	34.80	32.99	30.90
	3B 3E	6128.3	6162.3	6191.0 6355.0	6201.2 6370.6	6172.7 6340.6	6068.4 6258.4
Bending mode freq	4B	16284.0	16331.1	16350.6	16306.3	16140.1	15711.9
(RPM)	4F	16564.7	16616.3	16643.1	16610.8	16466.6	16103.0
	5B	30074.4	30225.5	30356.7	30410.1	30283.1	29590.7
	5F	30604.0	30761.8	30904.1	30977.1	30893.0	30410.6
Torsional mode freg.	1st	55887.6	55774.7	55530.9	55064.4	54209.6	52429.0
(RPM)	2nd	118190	118033	117682	116965	115449	110970

Table 5 Variations of the natural frequencies by changing inner hole diameter in the MCP rotor

(Shaft Inner Hole Size Sensitivity)

3600RPM	10^4 N/m		Table 5
	가		
	가가	. 16mm	
1	20 - 28	7년 2	16 – 20
		가 가	

3600 RPM		10^4 N/m		
	Table 6			
가				
		가		
		가		
			71	
	Tab	le 6	가	, 1

	2		,
가 .			가
,			

가 .

[2]

가

•

24

.

Table 6 Natural fr	requencies by c	hanging the lo	cations of axial	and radial bearin	g in the MCP rotor
1 abic o Matural II	requencies by c	nanging the lo	cations of axial	and radial bearing	g in the wier rotor

		Natural Frequencies (RPM)				
Mode		By EDSM	Ву	By FEM		
		Present Layout	Present Layout	Changed Layout		
	1B/1F	164.63/165.78	164.63/165.78	163.21/163.89		
Ponding	2B/2F	209.92/256.91	209.92/256.91	219.92/233.21		
mode	3B/3F	6162.2/6322.2	6162.3/6322.3	6410.80/6438.73		
mode	4B/4F	16330/16616	16331/16616	15645.73/15688.47		
	5B/5F	30219/30755	30225/30762	30642.10/30770.24		
Torsional	1st	-	55775	63297		
Torsional	2nd	-	118033	115995		
mode	3rd	-	171790	151998		

3.

MCP

.

,

			()	가.	МСР
1300RPM 360	OORPM .			1300RP	PM, 3600RPM
		가 5	6500RPM	(13000,	19500 26000, 32500
RPM), 18000RP	PM	(36000, 54000, 72000, 90	000RPM) 가		
가					
	10%				
MC	CP	가			

,

•

•

,

•

[1] Hashish, E. and Sanker, T. S., "Finite element and modal analyses of rotor bearing systems under stochastic loading conditions," Trans. ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design, 1984, Vol.106, pp.80-89

[2] ," ," ,1999