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Abstract

 A critical heat flux (CHF) prediction method using an artificial neural network
(ANN) was evaluated for application to the high-heat-flux (HHF) subcooled flow
boiling. The developed ANN predictions were compared with the experimental database
consisting of a total of 3069 CHF data points. Also, the prediction performance by the
ANN was compared with those by mechanistic models and a look up table technique.
The parameter ranges of the experimental data are: 0.33 ≤ D ≤ 37.5 mm, 0.002 ≤ L ≤ 4
m, 0.37 ≤ G ≤134 Mg/m2s, 0.1 ≤ P ≤ 20 MPa, 50 ≤ ∆hsub,in ≤ 1660 kJ/kg, and 1.1 ≤ qCHF ≤
276 MW/m2. It was found that 91.5% of the total data points were predicted within a ±
20% error band, which showed the best prediction performance among the existing
CHF prediction methods considered. The ANN method is likely to be suitable for the
HHF subcooled flow boiling CHF.

1. Introduction

A subcooled flow boiling with phase change has been shown capable of
accommodating high heat transfer rates due to its enhanced heat transfer mechanism.
The critical heat flux (CHF) in the subcooled water at a high mass flow rate and high
subcooling is being studied by many researchers, since it is an important parameter for
the design of high-heat-flux (HHF) removal systems. The heat transfer system should be
operated to maintain the wall temperature safely below the CHF to avoid the possibility



of tube burnout.
The CHF mechanism in the subcooled flow boiling is not well understood, though

large numbers of theoretical and experimental studies have been carried out. Among the
many existing mechanistic models available today, only a few models are applicable to
the HHF subcooled flow boiling CHF. The authors’ previous study [1] showed that the
models of Celata et al. [2], Weisman and Pei [3], and Kwon and Chang [4] predicted the
HHF subcooled flow boiling CHF while keeping reliable accuracy.

As one of the CHF prediction methods, an artificial neural network (ANN) has
been recognized to provide a valuable methodology for processing experimental CHF
data. The ANN can model complex systems without requiring the explicit formulation
of the possible relationship that may exist between the variables. Recently, Yapo et al.
[5] and Moon and Chang [6] applied the ANN to the CHF.

In this paper, the CHF prediction procedure using the ANN was developed for the
HHF subcooled flow boiling, and its prediction performance was compared with those
by the mechanistic models and the look-up table method.

2. CHF for the HHF Applications

Among the possible techniques for HHF removal, subcooled water flow boiling is
considered to be a more attractive means for engineering purposes. The heat loads
required in the electronic components cooling and light water reactor (LWR) are on the
order of 1 MW/m2, which can be removed without exceeding the CHF by using a
relatively low mass velocity and low subcooled flow boiling. Some HHF systems, such
as fusion reactor components, particle accelerator targets, high-power lasers, and rocket
nozzles require a very high heat flux, i.e., one order of magnitude higher than LWRs.
Particularly, fusion reactor components require a very high heat removal rate up to 80
MW/m2. These systems are controlled under a constant heat flux condition, and the
large increase in wall temperature may result in burnout of the cooling channel.

Motivated by the need in development as well as the safety analysis of HHF
applications, extensive studies of high CHFs have been made during the past several
decades. Bergles [7] performed some experiments to investigate the CHF and flow
characteristics of highly subcooled flow boiling with a high mass velocity in small
diameter tubes. He showed that the reduction of tube diameter led to a substantial
increase in CHF. Nariai and Inasaka [8] systematically investigated the effect of tube
diameter and tube length on the CHF. They observed an abnormality of the subcooled



flow boiling in small diameter tubes with a high mass velocity. The actual void fraction
measured was considerably lower than those estimated by the existing correlations or
models. The reduced void fraction at the tube exit resulted in an increase of the CHF.
Most recently, Mudawar and Bowers [9] obtained the highest CHF of 276 MW/m2

among those reported in the literature for uniformly heated tubes.
A total of 3069 experimental CHF data for water subcooled flow boiling in

uniformly heated tubes was selected. The selection criteria were that the equilibrium
quality at the tube exit is less than zero and the CHF value is greater than 1 MW/m2.
The ranges of parameters for the data set selected from different references [9, 10-18]
are presented in Table 1. The ENEA CHF database in the range of fusion reactor
thermal hydraulics was collected by Celata et al. [18].

According to the results of the authors’ study [19], the CHF database was simply
classified into two categories based on tube inside diameter and mass velocity: the
HMSD (High Mass velocity and Small Diameter) region for G ≥10 Mg/m2s and D < 3
mm, and the normal region for G < 10 Mg/m2s or D ≥ 3 mm. However, the actual value
for the boundary could not be clarified in the initial assessment. The first category
includes 843 out of 3069 data points and the second category includes the remaining
2226 data points.

3.  CHF Prediction Methods

Up to the present, the prediction methods of the CHF have been developed in four

Table 1.  Experimental CHF data for the HHF subcooled flow boiling

   Parameter No. D (mm) L (m) P (MPa) G (Mg/m2s) ∆hsub,in(kJ/kg
)

qCHF(MW/m2)

Thompson et al.[10] 541 1.14 ~ 37.5 0.04 ~ 1.97 2.1 ~ 19.0 0.7 ~ 7.5 49 ~ 1659 1.1 ~ 14.8

Becker et al. [11]
101 6.0 ~ 10.0 0.4 ~ 3.0 3.04 ~ 20.0 0.37 ~ 6.98 648 ~ 1384 1.05 ~ 7.48

Zenkevich [12] 244 5.8 ~ 11.0 1.0 ~ 4.0 7.85 ~ 19.6 0.96 ~ 5.06 239 ~ 1617 1.05 ~ 7.29

Chen et al. [13] 109 10.0 ~ 16.0 0.3 ~ 0.4 0.15 ~ 1.7 1.4 ~ 13.4 228 ~ 701 4.17 ~ 14.56

Boyd [14-16]  23 10.2 0.5 ~ 1.17 0.45 ~ 1.6 1.14 ~ 7.45 544 ~ 772 1.53 ~ 11.5

Nariai et al. [17]  14 6.0 0.1 0.1 ~ 1.5 4.59 ~ 8.69 245 ~ 671 8.5 ~ 22.1

Mudawar et al. [9] 169 0.4 ~ 0.9 0.0045 ~ 0.03 0.25 ~ 17.2 5.0 ~ 134.0 322 ~ 1584 9.4 ~ 276

ENEA [18] 1868 0.33 ~ 25.4 0.002 ~ 0.61 0.09 ~ 8.41 0.93 ~ 90.0 88 ~ 1018 3.33 ~ 228

     Total 3069 0.33 ~ 37.5 0.002 ~ 4.0 0.1 ~ 20.0 0.37 ~ 134 49 ~ 1659 1.05 ~ 276



parts: empirical correlations, graphical or look-up table techniques, an analytical model
based on the CHF mechanism, and ANN techniques. The advantage of analytical
models based on the CHF mechanism is that it would be easily improved and extended
to a wide range of operating conditions. In this section, the mechanistic model and the
ANN method are briefly described for HHF applications.

3.1 Mechanistic CHF Models

Owing to the limited understanding of two-phase flow structure near the CHF and
complicated phenomena relating the CHF, mechanistic CHF models have been
considered of secondary importance. The mechanistic CHF models are valuable to
understand the physical nature of the CHF phenomenon rather than prediction accuracy.
Most of the mechanistic CHF models are based on hypothetical assumptions regarding
the flow structure of the near-wall when the heat flux approaches the CHF condition.

The models of Celata et al., Weisman and Pei, and Kwon and Chang were chosen
to evaluate the prediction performance for the HHF CHF database. Figure 1 illustrates
the concept of each mechanistic model in which the Celata-Katto et al. model is in
principle similar to the Celata et al. model. The Weisman-Pei model [3] based on the
bubble crowding mechanism, and the Kwon-Chang [20] model based on the wall-
attached bubble coalescence were originally developed for LWR operating conditions.
The authors [4,19] suggested a procedure to predict the CHF for the HHF subcooled
flow boiling and it was proven to be applicable to a wide range of operating conditions
for both LWRs and fusion reactors. The Celata et al. model [2] based on the liquid
sublayer dryout mechanism was originally developed for application to the HHF CHF.

 Table 2. Parameter ranges of the mechanistic CHF models

Celata et al.
[2]

Weisman-
Pei [3]

Kwon-Chang [20]

Pressure (MPa) 0.1 - 8.4 2 - 20.5 2 - 20

Mass flux (kg/m2s) 900 - 90000 972 - 3611 450 - 7500

Diameter (mm) 0.3 - 25.4 1.15 - 37.5 1 - 37.5

Length (m) 0.0025 - 0.61 0.035 - 3.6 0.035 - 6

Subcooling ∆Tsub,in ≤ 225
K

α < 0.6 ∆hsub,in ≤ 1660 kJ/kg

Used constants No 3 1



Table 2 shows the recommended ranges of variables for the chosen CHF models.
All the aforementioned models, except the Celata et al. model, contain some

empirically determined constants to fit them against the experimental CHF data. The
Kwon-Chang model contains one empirical correlation for the critical wall-void fraction.
In the Weisman and Pei model, they adjusted an empirical constant of the density ratio
of vapor and liquid in order to minimize the statistical error of the CHF predictions. The
density difference becomes significantly large at low pressure and hence the empirical
constant is not valid for low pressure. The Weisman and Pei model predicts the CHF
well for only the high pressure region

3.2 Artificial Neural Network Method

The ANN has been utilized in many fields of engineering, e.g., pattern recognition,
parameter estimation, control and so on. The ANN removes the burden of finding an
appropriate model structure to fit the experimental data. Yapo et al. [5] and Moon and
Chang [6] showed that an ANN might provide a valuable alternative to the current
techniques for estimating the CHF. The back propagation network (BPN) is the most
well known and widely used among the current neural network systems available. The
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BPN learning algorithm is similar to human learning. A supervisor trains a network with
pairs of problems and solutions. The BPN can then generalize the problem, extract their
characteristics, and predict the solutions for untrained problems.

The general structure of the BPN network adopted in this application is shown in
Fig. 2. Through a sensitivity study, a three-layered BPN was found to be more effective
in predicting the CHF, which consists of one input layer, two hidden layers, and one
output layer. Each layer is composed of nodes. External data enters the network through
the input nodes and, after typically nonlinear transformations, the output data are
generated by the output nodes. A detailed presentation of neural networks, as well as
their application to predict the CHF, is presented in the reference papers.

The first step of the application of the BPN is to design a neural network that
progresses all the available information. Selection of suitable input patterns is important
for the BPN performance and they are constituted by the information on the channel
geometry and the fluid conditions. Following the practice by Moon and Chang [6], five
dimensionless parameters were chosen to correlate the CHF for the forced convection
boiling in the uniformly heated vertical tubes as follows:
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where qc″ = CHF, G = mass flux, h = enthalpy, L = tube length, D = tube inside
diameter, ρ = density, and σ = surface tension.
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The BPN is sensitive to the number of nodes in the hidden layer. After a sensitivity
analysis, the node numbers of the first and second hidden layers are set to 30 and 40,
respectively, in which 3000 iterations were done for network training. Since the task in
the present application is to determine the CHF values with given conditions, the output
layer is chosen to be made by a unique node.

In order to perform a reliable test of the BPN, the CHF database was subdivided
into two subsets. About 90% of the CHF database was randomly selected and used to
train the BPN. An error assessment of the trained BPN was then performed with the
remaining data that were not used in the BPN training. Figure 3 shows the overall
training and prediction procedures.

4. Comparison with Experimental Data

Prediction by each CHF model was quantitatively evaluated by the CHFR, defined
as the ratio of the predicted CHF to the measured CHF, with three statistical parameters
of µ (average value), σ (sample standard deviation), and RMS (root-mean-square error)
of the CHFR. The comparison was conducted for two data regions as discussed in the
previous section: the HMSD region for G ≥10 Mg/m2s and D < 3 mm and the normal
region for G < 10 Mg/m2s or D ≥ 3 mm.

It should be pointed out that the parameter ranges of the present database are
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Fig. 3  BPN procedure for CHF prediction



outside the recommended ones for each CHF model shown in Table 2. The prediction
performance by the mechanistic model is only good in the database range from which
the model was validated. The purpose of analysis is to evaluate the generality of the
CHF prediction method in the subcooled flow boiling. Table 3 shows the comparison
results of the prediction performance against the present database, where the term
original means the recommended range of the CHF model.

The Celata et al. model predicted about 89% of the 3069 data points within a ±30%
error band. The model has a tendency to underpredict the CHF data for the present
database as shown in Table 3. The Celata et al. model was developed using the ENEA
database [18]. A total of 2167 data points out of 3069 fell into the recommended range
of the model, and about 90% of which was predicted within a ±30% error band. The
Weisman-Pei model generally over-predicted the CHF and the prediction performances
by this model were not good in the low-pressure range as expected. If we restrict the
experimental data to the recommended range, the Weisman-Pei model predicted a total
of 999 data points with µ = 1.11.

The Kwon-Chang model shows a relatively large discrepancy for the HMSD
region, and 89% of the total 843 data points were predicted within a ±30% error band,
while for the normal region, the model predicted fairly well, as shown in Fig. 4. About
90% of the 3069 experimental data were predicted within a ±30% error band. The
assumptions and constitutive models that were employed in the construction of the

Table 3. Prediction performances by the mechanistic models and ANN method

    Type No* µ RMS σ
Celata et al.
[2]

 HMSD
 normal
 total
original

 843
2226
3069
2167

0.92
0.92
0.92
0.96

20.8
18.7
19.3
18.0

 19.1
 16.7
 17.4
 17.5

Weisman-
Pei. [3]

 HMSD
 normal
 total
original

 843
2222
3065
 999

1.16
1.21
1.20
1.11

26.3
28.9
28.2
17.4

 20.6
 19.7
 20.1
 13.5

Kwon-
Chang [4]

 HMSD
 normal
 total
original

 843
2226
3069
 886

0.99
1.01
1.01
1.02

22.0
17.0
18.5
10.4

 22.0
 16.9
 18.5
 10.0

ANN  HMSD
 normal
 total

 843
2226
3069

1.02
1.025
1.02

18.3
10.9
13.3

 18.2
 10.6
 13.1

Look-up
Table [21]

 normal
  

1575 0.99 17.4  17.3

* Number of CHF data successfully converged



mechanistic CHF model might not hold for a small tube diameter at a high mass flow
rate (HMSD).

The BPN was trained by the 2063 data that were randomly selected. An error
assessment of the trained BPN was then performed with the remaining 306 data that
were not used in the BPN training. The comparison results for these untrained data
points are shown in Fig. 5. The
RMS errors of the prediction are
12.3%, of which a small error
indicates that the training is
successful and that the network is
able to predict the CHF. The
prediction results against the entire
data are presented in Fig. 6.

The predictions using the CHF
look-up table of Groeneveld et al.
[21] were performed based on the
so-called heat balance method. The
look-up table has its own
applicable ranges, and only 1575
points out of 3069 were used for
comparison. Since the upper limit
of the mass flow rate is 8 Mg/m2s,
this method was not applicable to
the HMSD region. For tube
diameters other than 8 mm, the
diameter correction equation
suggested by the table authors was
used. The average value of the
CHFR is 0.99 with a standard
deviation of 17.3 %. Figure 7
shows the comparison results of the
1575 data points by the CHF look-
up table for the normal region.

The error distributions of the
ANN and other CHF prediction
methods are given in Figs. 8 and 9
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for the HMSD and normal regions, respectively. Figure 10 shows the comparison of the
percentage of data points calculated with the specific error range for the entire CHF data,
where N means the number of data points successfully converged in the CHF
calculation. Among the five CHF prediction methods considered here, the ANN gives
the most accurate predictions for
both ranges. For the HMSD region,
the Kwon-Chang model is
compatible with the Celata et al.
model. For the normal region of
the HHF subcooled flow boiling,
the Kwon-Chang model gives the
best prediction performance
among the mechanistic models. It
is interesting to see that the ANN
method works well in comparison
with the experimental data and the
prediction performance is better
than any other CHF prediction
method considered here.

Based on the investigation of
the dependence of the prediction
accuracy on major parameters, the
ANN method did not exhibit
significant systematic deviations
that could be attributed to certain
system parameters, such as
thermal-hydraulic conditions and
geometric parameters.
Experimentally, it has been clearly
known that the subcooled flow
boiling under conditions of high
mass velocity and small tube
diameter can accommodate very
high heat fluxes. As shown in Figs.
11-12 for the normal region, the
comparison of predictions by the
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ANN method with the experimental data provided reliable accuracy. However, for the
HMSD region, some scattering data points exist for very small or/and very high mass
flow rate conditions.

5. Conclusion

A CHF prediction method
using an ANN was evaluated for
application to the HHF subcooled
flow boiling. The ANN method
utilized was based on the BPN
technique. The developed ANN
predictions were compared with
the experimental database
consisting of a total of 3069 CHF
data points. The parameter ranges
of experimental data were: 0.33 ≤
D ≤ 37.5 mm, 0.002 ≤ L ≤ 4 m,
0.37 ≤ G ≤134 Mg/m2s, 0.1 ≤ P ≤
20 MPa, 50 ≤ ∆hsub,in ≤ 1660 kJ/kg,
and 1.1 ≤ qCHF ≤ 276 MW/m2.

When compared with the
present high CHF database, the
ANN method gave very accurate
results with µ = 1.02, σ = 13.1%,
and RMS=13.3%. Moreover,
91.5% of the total data points
were predicted within ± 20%,
which shows the best prediction
performance among the existing
CHF prediction methods
considered. The ANN method is
likely to be suitable for the HHF
Subcooled flow boiling CHF.
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