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Abstract

The regularized Newton-Raphson method(RNRM) has been used to reconstruct by electrical
impedance tomography (EIT) a two-dimensional flow field containing some artificial objects.
Three different cases of object size, number and position were investigated. Instead of using
measured voltage data at boundary electrodes, computed data were used. It is found that the
reconstruction method employed is working fine for the three cases. Though some blurring is
found along the contour of the objects, the overall shape of the objects can be well
reconstructed. The position of the objects was also accurately predicted. Also investigated is
the effect of the regularization parameter. Our study shows the use of smaller regularization

parameter results in better reconstruction.
I. Introduction

The EIT(Electrical Impedance Tomography) technology has become a potential tool for
reconstructing the phase distribution of a two-phase flow field. The major advantage of an
EIT system is that its temporal resolution is higher than other tomographic measuring
techniques such as X-ray CT(computer tomography) or ultrasonic tomography. Time
resolutions more than 50 frames per second can be achieved. In an EIT system, a number of
electrodes are mounted on the periphery of the flow field which contain an electrically
conducting medium such as ordinary water. A prescribed electric current is injected into one
electrode, known as the source electrode, and withdrawn at another electrode or sink electrode
which is usually grounded. The resulting electric voltages are then measured at all of the
electrodes with respect to the ground. The measured voltages are dependent on the
conductivity (or resistivity) distribution of the flow field. For a bubbly two-phase flow mixed
with water and air, for instance, the conductivity difference between water and air is very

large, so that it is possible to infer the phase distribution from the measured voltages on the



boundary electrodes.

The reconstruction problem basically includes forward and inverse solution steps. In the
forward solution step, the electric potential distribution inside the flow domain and on the
periphery is computed based on an assumed conductivity distribution. Though nonlinear, the
forward problem is well-conditioned, and there exists a unique solution. Efficient methods, for
instance the FEM(finite element method), are available to convert the forward problem into a
system of linear algebraic equations. One can either write his own FEM program or use a
commercial tool such as MATLAB to solve the forward problem.

In the inverse solution step, the interior conductivity distribution is reconstructed from the
measured voltages on the boundary. The inverse problem is ill-conditioned in nature and
hence there does not generally exists a unique solution corresponding to a boundary voltage
distribution. Approaches for solving the inverse problem can be categorized as direct and
iterative methods. Direct analytical solution methods are subject to simplifying assumptions
and their usage in the case of two phase flow fields is of very little practical interest. In
iterative approaches, a candidate conductivity distribution is first assumed. A set of boundary
voltage values are then calculated from the candidate distribution by solving the forward
problem. The calculated voltages are compared to voltages measured on the boundary during
current injection, and the reconstruction error is represented in the form of their squared
difference. The candidate conductivity distribution is then modified based on the error. The
forward problem is again solved based on the modified conductivity distribution, and new
reconstruction error is evaluated. This process is continued until some error criterion is
satisfied.

Various reconstruction methods have been developed and applied to reconstructing the phase
distribution of multiphase flows. Methods of more frequent application include the back
projection method[1], the Newton’'s one-step error reconstruction(NOSER) method[2],
Newton-Raphson method(RNM)[3]. A comprehensive description of these methods can be
found in references [4]. These methods are basically the same in the sense they generally
follow the procedures described in the last paragraph. They differ in the way the current
conductivity distribution is updated to obtain a new distribution.

Yorkey et al. [5] developed a modified version of Newton-Raphson method, also known as
the YWT method, and much reconstruction work has been done with this method. It is
reported that the modified Newton-Raphson method has produced more accurate results than
any other method listed above when there exists no noise. However, its performance worsens
when measurement noise is present. It produces noisy images when the number of elements
are large for good spatial resolution.[4] In order to compensate these drawbacks, Hua et al.[6]
introduced including a regularization term in the reconstruction error. Several methods of the
regularization have been suggested.

We have implemented the Newton-Raphson algorithm regularized by the subspace

regularization method suggested by Vauhkonen[7]. In this paper, we present reconstructed



images of a circular flow field which is assumed to contain artificial object of different
conductivity. Also presented are the effect of the regularization parameter on the reconstructed

images and the transient behavior of the relative root mean square error of the reconstruction.
II. Forward Problem

In a conducting medium where no charge sources or sinks are present, the governing

equation for the electric field can be derived from Maxwell’s equation as
vV ovVe=0( (1)

where o is the conductivity distribution of the medium and ¢ is the electric potential. For an
EIT system with finite number of discrete electrodes mounted on the periphery of the flow

field, the boundary conditions are given by
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where # is the outward unit normal vector on the bounding surface, and ¢ is the current
density at the boundary. Qp and Qp denote the surface of the excitation electrodes and the

rest of the boundary surface, respectively.

For FEM modeling of eqg. (1), the flow domain is divided into a finite number of elements.
Since our problem is two dimensional, we use triangular elements. It is assumed that the
conductivity distribution is constant in each element, and the potential distribution in an

element can be represented by a simple interpolation formula:

#(x,v)= Z@ filx, ) (3)

where ¢; are the potentials at nodes(vertices) of the triangular element. fi(x,y) is a

dimensionless interpolation function which has the value 1 at the i-th node and 0 at other two
nodes. Given the boundary conditions and with the treatment of eqg. (3), eq. (1) can be

converted into a system of algebraic equations of the form[7]:
Ab=f (4)

where A is the admittance matrix of dimension (N+L-1)x(N+L-1) with N and L being the

number of internal nodes and the number of electrodes, respectively. & and f are the vectors



of the electrical potential( ¢) and current density(i), respectively.

b=y, boy ... dnsr-1)" (5)

f=(l'1,l'2,---l'N+L—1)T 6)

Elements of the vector f become zero except at source and sink electrodes.

Thus, given the conductivity distribution and boundary conditions, eq. (1) can be uniquely
solved, and the solution provides the voltage values at all nodes including the boundary
electrodes. We use the MATLAB to solve the forward problem.

III. Inverse Problem

The goal of the inverse solution step is to seek a resistivity(or conductivity) distribution
which minimizes the difference between measured and computed voltages at the boundary
electrodes. In order to do this, the resistivity distribution used in the forward solution step is
continuously updated based on the voltage difference. The Newton-Raphson method(RNM)
takes the objective function as

(o) =3[ V(0)= U [ V()= U] @

where V(p) and U are vectors of the computed and measured voltages, respectively, at the

boundary electrodes. o is the resistivity distribution of the flow medium defined by p=0_1

The vectors V(o) and U are defined as

V="[ovl, 0}, ..., 0505, ..., 0,...1" j=1,2,..,@ i=1,2,...,P ()
U=[ul,u},....u8, 45, ... ul,... 1" j=1,2,..,@ i=1,2,...,P 9)
where

vf = computed voltage at the j-th electrode for the i-th injected current

uj = measured voltage at the j-th electrode for the i-th injected current

Q
i

the number of electrodes

the number of injected current patterns

Minimization of the objective function requires:



O (p)=[V (01T V(p)— UI=0 (10)
where the first derivative term V' (0) is called the Jacobian matrix and defined as

oV,
apj ’

J=V'(0)= 1=1,2,...,QxP, j=1,2,....M an

where p; is the conductivity of the j-th element and M is the number of mesh elements
used.

The Taylor’s series expansion of @ (p) at pkﬂ: pk-i— Apk is approximated by
(o' =0 (0" + 07 (0" 40" =0 (12)
The second derivative term @’is called the Hessian matrix and can be approximated as
H o= 0" (0= [V (0D V (0" =TT (13)
where we have neglected the second derivative of V(pk). Rearranging eq. (12) gives
do* =" =t =—H ] [V (0" — Ul (14)
During minimizing of the objective function by the RNM, high ill-conditioning occurs due to
a very high condition number of the Hessian matrix, which is defined as the ratio of the
maximum eigenvalue to the minimum. Usual approach to overcome this problem is to include

a regularization term in the objective function. We use the regularized Newton-Raphson

method(RNRM) where the objective function is given by
0(0) =5 V()= V1L V(p) ~ Ul+ 5 a(Lo) (L) (15

where @ and L are the regularization parameter and the regularization matrix, respectively.

By following the same procedure as used above, we can get
Ao*= o — pF=—(H+ oL L) "M JI V(0*)— Ul + aL "Lo"} (16)

Various methods of specifying the regularization matrix are available. For instance, the

algorithm[4] developed by Rensselaer Polytechnic Institute uses LTL= diag(J"]). We use the



subspace regularization method the detail of which is given in reference [7].
The majority of the computational effort using the RNM is involved with the calculation of
the Jacobian matrix, and subsequently the Hessian. From eqgs (4) and (11), the derivative of

the potential distribution with respect to the resistivity of the n-th element can be obtained by

-1
aapb - a(glp 2 (17)

where p, is the resistivity of the n-th element. The right hand side of eq. (17) can be

expanded as

AN 1 0A -1, ,-1 0A
00, A 8pnA f=-A 3Pnb (18)

The derivative of the admittance matrix is can be calculated as

M‘%p—”:’—a=—%fmv¢m-v¢i (19)

where
A(m, i) = element of A at m-th row and i-th column

vV ¢,, = the gradient of the m-th node basis function

4, = integration over the n-th element

Since eq. (17) forms the derivatives of all the voltages, the Jacobian is constructed with the
part which belongs to the electrode nodes. After the Jacobian matrix has been obtained, the
Hessian matrix can be constructed by eq. (13). Now we can solve eq. (16) and update the

resistivity distribution using the relation
pk-‘rl: pk+ A.Ok (20)

where k is the iteration count. In order to check the convergence of a reconstruction during

iteration, the root mean square error(RMSE) is usually evaluated by

[ U,— Vk(pk)] . [ U,— Vk(pk)]
Ul U,

RMSE = \/ (21)

IV. Numerical Experiments



In order to examine the performance of the RNRM, we have considered a two-dimensional
circular flow field with a diameter of 30 cm and 16 electrodes equidistantly spaced on the
periphery. It is assumed that one reference electrode(sink electrode) is fixed to ground while
the rest of the electrodes serve as the current source. For each current injection, the true
voltages are computed at all electrodes by solving eq. (1). The MATLAB is used for FEM
mesh generation and solution of eqg. (4). For numerical experiments these computed voltage
data are used as measured data.

We have considered 3 cases of fictitious flow regimes which contain a bulk medium of
resistivity 400 Qcm and artificial objects of resistivity 200 Qcm. Fig. 1 shows the mesh
structure used, wherein 1968 triangular elements and 1049 nodes are constructed. In the first
case, Fig. 2 (a), we assume an artificial object of relatively large size located between the
center and the periphery. The second case, Fig. 2 (b), contains two small objects: one located
around the center and the other near the periphery. The third case, Fig. 2 (c), also contains
two small objects: both of them lying near the periphery.

In order to examine the effect of the regularization parameter( @) on the reconstruction we
tested two values: @=0.0005 and @=0.000005. The initial candidate resistivity distribution were

©0=400 Qcm in all elements. Figs. 3 (a), (b), (¢) show reconstructed images of cases 1, 2 and

3, respectively when a=0.0005. The images shown in Figs. 4 were obtained with a=0.000005.
It is found that the reconstruction method we have used works fine for the 3 cases. Although
some blurring is found along the boundary of the objects, one can generally identify the
contour of the objects. The positions of the objects and reconstructed images well match.

As for the effect of the regularization parameter, it is evident that the use of the smaller &
results in better reconstruction. The effect is better shown in Figs. 5 (a), (b), (c), where the

RMSE’s are compared for both a values. With @=0.000005 the RMSE’s for the 3 cases
sharply drop and become stable with 20 current patterns. With @=0.0005, however, the

RMSE'’s oscillate even after a large number of current patterns are used.

V. Conclusion

The regularized Newton-Raphson method has been used to reconstruct a two-dimensional
flow field with some artificial objects. Three different cases of object number, size and
position were investigated by numerical experiments. Instead of using actually measured
voltage data at electrodes, computed voltage data were used. The data were obtained by
solving the governing equation with MATLAB. It is found that the reconstruction method
employed works fine for the 3 cases. Although some blurring is found along the boundary of
the objects, the shape of the objects can be well identified. The positional accuracy is also

very good. As for the effect of the regularization parameter, the use of the smaller



regularization parameter results in better reconstruction. It is found proper choice of the
regularization parameter is important to reduce computational efforts as well as experimental
work.

Further research is needed to improve the spatial resolution of the reconstructed image,
especially when more than two objects are close to each other. Also needed is further

investigation of the effect of the regularization parameter and regularization matrix.
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Fig. 2 (b)

The FEM mesh structure
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Fig. 2 (a) True view of case 1
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Fig. 2 (c) True view of case 3



Fig. 3 (a) Reconstructed image of case 1

regularization parameter « =0.0005

Fig. 3 (b) Reconstructed image of case 2 Fig. 3 (c) Reconstructed image of case 3

regularization parameter « =0.0005 regularization parameter « =0.0005



Fig. 4 (a) Reconstructed image of case 1

regularization parameter « =0.000005

Fig. 4 (b) Reconstructed image of case 2 Fig. 4 (c) Reconstructed image of case 3

regularization parameter « =0.000005 regularization parameter « =0.000005
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