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Abstract

A linear multiple balance method (LMB) is developed to provide more accurate and positive

solutions for the discrete ordinates neutron transport equations. In this multiple balance ap-

proach, one mesh cell is divided into two subcells with quadratic approximation of angular ux

distribution. Four multiple balance equations are used to relate center angular ux with aver-

age angular ux by Simpson's rule. From the analysis of spatial truncation error, the accuracy

of the linear multiple balance scheme is O(�4) whereas that of diamond di�erencing is O(�2).

To accelerate the linear multiple balance method, we also describe a simpli�ed additive angular

dependent rebalance factor scheme which combines a modi�ed boundary projection acceleration

scheme and the angular dependent rebalance factor acceleration scheme. It is demonstrated,

via Fourier analysis of a simple model problem as well as numerical calculations, that the

additive angular dependent rebalance factor acceleration scheme is unconditionally stable with

spectral radius < 0:2069c (c being the scattering ratio). The numerical results tested so far on

slab-geometry discrete ordinates transport problems show that the solution method of linear

multiple balance is e�ective and suÆciently eÆcient.

1. Introduction

To provide more accurate and faster solutions for discrete ordinates neutron transport

equation, several people have implemented multiple balance schemes or subcell methods.

Among multiple balance schemes, Morel and Larsen[1] suggested simple primitive multiple

balance methods in early 1990s. They divided a base cell into two subcells and used the

standard balance for each discrete spatial cell together with auxiliary equations that repre-

sent approximate balance equations over subregions of the cell. Cell edge scalar uxes are

introduced by several ways to approximate balance equations over subregions of the cell. The

solutions of primitive multiple balances (PMB, MB-1, and MB-2) are positive and have dif-

fusion limit, but the accuracy is second order as that of diamond di�erencing. After several

years, Castrianni and Adams[2] also suggested new nonlinear multiple balance methods with

extension to multi-dimensional geometries. That method, which is algebraically nonlinear,

enforces particle conservation on subcells and two multiple balance equations are derived

with approximation of the spatial variation of the source in each subcell as an exponential.

The half-cell-average uxes and exiting uxes are obtained analytically by a transport sweep.



Their solutions are strictly positive and fourth-order accurate, but awed in thick di�usive

and anisotropic problems.

We devise a new linear multiple balance (LMB) method that provides more positive (not

strictly positive) and more accurate solutions with reduced extra memory requirement such as

cell edge source in the linear characteristic method. Subcell is also considered and four balance

equations are used considering two cell edge angular uxes and two cell center angular uxes.

The source distribution is approximated as spatially linear in a subcell. In addition, the center

angular uxes are introduced as unknowns to approximate the angular uxes as quadratic

distributions. With these additional center angular uxes, the linear multiple balance scheme

developed in this work gives us more accurate solutions than those of the diamond di�erence

(DD) scheme. For simplicity, we consider one-group discrete ordinates neutron transport

equation.

In Section 2, we describe the linear multiple balance method for discrete ordinates trans-

port equation. In Section 3, we analyze the spatial truncation errors for the linear multiple

balance method and diamond di�erence method. In Section 4, a di�usion limit analysis is

given. To accelerate the linear multiple balance method, an additive angular rebalance factor

algorithm is devised in Section 5. In Section 6, we give the numerical results, and in Section

7, we present the conclusions.

2. Derivation of Linear Multiple Balance Method

To describe our linear multiple balance method, we begin with the following one group

slab geometry discrete ordinates transport equation in standard notation:

�n
d

dx
 n(x) + � n(x) = q(x); (1)

where

q(x) = �s�(x) + S(x);

�(x) =
1

2

NX
n=1

wn n(x);
(2)

and �n and wn are a discrete ordinate set and its weight, respectively.

Note that q(x) is actually a function of  (x), and thus Eq. (1) is solved iteratively with

q(x) assumed to be known at each step of the iteration (source iteration). Integrating Eq.

(1) over a spatial mesh cell i, of which interval width is �i(= xi+1=2 � xi�1=2), we obtain a

balance equation as

�n( i+1=2;n �  i�1=2;n) + �i�i
� in = �i�qin: (3)

Here

� in =
1

�i

Z
xi+1=2

xi�1=2

 (x)dx; �qin =
1

�i

Z
xi+1=2

xi�1=2

q(x)dx;

 i�1=2;n =  n(xi�1=2); �i = �(xi); xi =
1

2
(xi�1=2 + xi+1=2):

(4)

If �n > 0, then particles ow from left to right, and it is appropriate to solve the transport

equation following spatial cells in the direction from left to right. Then we can assume that
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Figure 1: Unknowns of the linear multiple balance method for cell i and i+ 1

 i�1=2;n has been determined from the boundary condition or the solution of the previous

cell, and that �qin is known from the previous iteration. Eq. (3) is thus one equation in two

unknowns, the cell average ux � in and the exiting ux  i+1=2;n.

The diamond di�erence equation,

� in =
1

2
( i+1=2;n +  i�1=2;n); (5)

provides one way to relate  i+1=2;n and � in. We may say that the diamond di�erence (DD)

scheme is a linear approximation for angular ux to evaluate cell average ux.

Generally, higher-order approximations for ux may provide more accurate solutions but

other aws can happen such as instability or negativeness of the solutions. A linear multiple

balance method is proposed to achieve higher accuracy in additions to more positive and

stable properties by assuming a quadratic approximation for angular ux. We apply four

balance equations to derive four unknowns; two mesh center angular uxes and two mesh

edge angular uxes. For example, the balance equations are given at the two subcells (cell i

and i+ 1) in Fig. 1.

The four linear multiple balance equations for cell i and i+ 1 are given by

�n( i+1=2;n �  i�1=2;n) + ��
 i�1=2;n + 4 i;n +  i+1=2;n

6
= ��qi;n;

�n( i+3=2;n �  i+1=2;n) + ��
 i+1=2;n + 4 i+1;n +  i+3=2;n

6
= ��qi+1;n;

�n( i+3=2;n �  i�1=2;n) + 2��
 i�1=2;n + 4 i+1=2;n +  i+3=2;n

6
= ��qi;n +��qi+1;n;

�n( i+1;n �  i;n) + ��
 i;n + 4 i+1=2;n +  i+1;n

6
=

��qi;n +��qi+1;n

2
;

(6)

where � = �i = �i+1; � = �i = �i+1;  i;n =  n(xi). Here, average angular uxes are

expressed by

� in =
1

�i

Z
xi+1=2

xi�1=2

 n(x)dx =
 i�1=2;n + 4 i;n +  i+1=2;n

6
; (7)

composed of incoming and outgoing uxes and center ux using Simpson's rule.

Matrix form for the four balance equations in the linear multiple balance scheme is

A x = b; (8)



where

A =

0
BB@

4a 6 + a 0 0

0 �6 + a 4a 6 + a

0 8a 0 6 + 2a

�6 + a 4a 6 + a 0

1
CCA ;

b =

0
BBB@

6 �
j�nj

�qi;n + (6� a) i�1=2;n

6 �
j�nj

�qi+1;n

6 �
j�nj

(�qi;n + �qi+1;n) + (6� 2a) i�1=2;n

3 �
j�nj

(�qi;n + �qi+1;n)

1
CCCA ;

x =
�
 i;n;  i+1=2;n;  i+1;n;  i+3=2;n

�T
;

a =
��

j�nj
; jAj = 1728a + 1728a2 + 720a3 + 144a4:

(9)

The determinant of the matrix system is positive, and the angular uxes are obtained by

direct inversion.

The e�ect of the truncation errors or positivity due to the spatial di�erencing procedure

can be seen clearly by examining the case of the uncollided neutrons when the group source

is set equal to zero.[3] Eq. (1) reduces to

�n
d

dx
 n(x) + � n(x) = 0; (10)

where we assume a constant cross section. For a uniform grid with mesh spacing �, the exact

expression for  i+1=2;n is

 i+1=2;n = e�2h i�1=2;n; (11)

where

h =
��

2j�nj
: (12)

The diamond di�erence scheme will give for  i+1=2;n as

 i+1=2;n =
1� h

1 + h
 i�1=2;n; (13)

whereas the step scheme gives

 i+1=2;n =
1

1 + 2h
 i�1=2;n: (14)

But the linear multiple balance method gives, by inversion for the matrix system, as

 i+1=2;n =
1

c0
fc1(6 � h) + c2(6 � 2h)g n;i�1=2

=
12� 12h+ 5h2 � h3

12 + 12h+ 5h2 + h3
 n;i�1=2;

(15)
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Figure 2: Comparison of the exact solution with three spatial di�erence approximations

where

c0 = 1728 + 1728h + 720h2 + 144h3;

c1 = �192h + 32h2;

c2 = 288 + 56h2:

(16)

The linear multiple balance method gives more positive solutions than those of the dia-

mond di�erence scheme as shown in Fig. 2.

3. Convergence Analysis of Linear Multiple Balance Method

In this section, we examine the observed errors, as the spatial mesh size is reduced, for the

linear multiple balance method. An analysis of the order of convergence is also provided with

Taylor series expansion for slab geometry, one group, discrete ordinates neutron transport

equation.

With Taylor series expansion, the numerical integration and di�erentiation are [4]

 (xi+1=2) =  i + h 0i +
h2

2!
 00i +

h3

3!
 000i + � � � ;

 (xi�1=2) =  i � h 0i +
h2

2!
 00i �

h3

3!
 000i + � � � ;

Z
xi�1=2

xi

 (x)dx = �h i +
h2

2!
 0i �

h3

3!
 00i + � � � ;

Z
xi+1=2

xi

 (x)dx = h i +
h2

2!
 0i +

h3

3!
 00i + � � � ;

Z
xi+1=2

xi�1=2

 (x)dx = 2h i +
h3

3
 00i + � � � ;

 00(xi) =
 i+1=2 � 2 i +  i�1=2

h2
�

5h2

12
 
(iv)
i

+ � � � ;

(17)

where 2h = xi+1=2 � xi�1=2 = �i.



Using Eqs. (5) and (17), the spatial truncation error for diamond di�erence (DD) is

derived as

� i '
1

2
( i+1=2 +  i�1=2)�

�2
i

24

d2 

dx2

���
xi

: (18)

Thus, the diamond di�erence method exhibits O(�2
i
) global cell edge and cell average errors.

To derive the convergence rate for the linear multiple balance method, the twice di�erential

operator terms for angular ux is considered. From Eq. (17), we obtain

 i�1=2 +  i+1=2 = 2 i +
�2

i

4
 00i +

�4
i

232
 iv

i ; (19)

and

� i '
1

6
( i+1=2 + 4 i +  i�1=2)�

�4
i

1392

d4 

dx4

���
xi

: (20)

Thus, the linear multiple balance method exhibits O(�4
i
) global cell edge and cell average

errors. To test accuracy of the linear multiple balance method, we select the homogeneous

problem described by Larsen and Miller.[5] The one-group and slab geometry problem is

solved using the S2 quadrature set.

�n
d

dx
 n(x) + � n(x) = �s

2X
m=1

wm m(x) +Q;

� 1 � x � 1; n = 1; 2;

 1(�1) =  2(1) = 0;

(21)

where � = 2; �s = 1; �1 = 1=
p
3; �2 = �1=

p
3, and w1 = w2 = 0:5.

We also consider a sequence of nine uniform spatial meshes, with � = 22�n; 1 � n � 9.

We report the relative errors in the cell edge scalar uxes:

E1n = max
0�i�2n�1

j�exact
i+1=2

� �i+1=2j

�exact
i+1=2

; 1 � n � 9: (22)

Here,

�exact
i+1=2 =

1

2

�
 exact

1 (xi+1=2) +  exact

2 (xi+1=2)
	
; 0 � i � 2n�1; (23)

is the exact solution, computed analytically, and �i+1=2 is the numerical solution. The relative

errors of the cell average scalar uxes are also given by

E2n = max
0�i�2n�1

j��exact
i

� ��ij
��exact
i

; 1 � n � 9: (24)

Table I shows the cell edge errors(E1n) and cell average errors(E2n) and their error ratios

(R1n and R2n). Error ratio is de�ned by Rkn = Ek;n�1=Ekn; k = 1; 2. The results indicate

the second-order (DD) and fourth-order (LMB) accuracies by providing the error ratios of 4

and 16, respectively, for suÆciently �ne meshes.



Table I: Cell Edge and Cell Average Errors and Error Ratios
Cell Edge Errors Cell Average Errors

DD LMB DD LMB

n E1n R1n E1n R1n E2n R2n E2n R2n

1 5.4401e-01 | 1.6108e-02 | 1.6903e-01 | 5.0051e-03 |

2 5.4473e-01 0.99 4.8374e-01 0.03 8.5997e-01 0.19 7.8287e-01 0.01

3 4.6557e-02 11.7 1.5942e-02 30.3 3.4035e-02 25.2 6.9789e-03 112

4 1.0927e-02 4.26 1.5831e-03 10.0 1.7639e-02 1.92 1.5113e-03 4.61

5 2.6745e-03 4.08 1.9927e-04 7.94 6.6910e-03 2.63 1.7728e-04 8.52

6 6.6829e-04 4.00 1.8241e-05 10.9 2.1095e-03 3.17 1.5299e-05 11.5

7 1.6678e-04 4.00 1.3996e-06 13.0 5.9693e-04 3.53 1.1270e-06 13.5

8 4.1685e-05 4.00 9.7143e-08 14.4 1.5913e-04 3.75 7.6275e-08 14.7

9 1.0421e-05 4.00 6.1304e-09 15.8 4.1106e-05 3.87 4.6848e-09 16.2

4. Di�usion Limit Analysis of Linear Multiple Balance Method

In strongly di�using media, the transport equation becomes or has properties of the dif-

fusion equation as an asymptotic limit. Therefore, a di�usion limit analysis for any transport

method would provide some assurance that the method has some validity, even if it is not

mathematically rigorous as a transport method.

The di�usion the limit analysis for the linear multiple balance scheme is derived similarly

to the diamond di�erence scheme as described in a Larsen's paper.[6]

The balance equation is given as

�n

hi
( i+1=2;n �  i�1=2;n) + �i � i;n = �si

X
n

wn
� i;n +Qi: (25)

To begin with di�usion limit analysis, the following asymptotic assumptions are needed:

�i !
�i

�
; �si !

�i

�
� �ai�; Qi ! Qi�: (26)

Then, the asymptotic balance equation becomes

�n

hi
( i+1=2;n �  i�1=2;n) +

�i

�
� i;n = (

�i

�
� ��ai)

X
n

wn
� i;n + �Qi: (27)

Now, the angular ux may be expressed by a summation of series

 n =
X
k=0

�k (k)n =  (0)n + � (1)n + �2 (2)n + � � � : (28)

First, collecting terms for O(1=�),

�i( � 
(0)
i;n

�
X
n

wn
� 
(0)
i;n
) = 0;

� 
(0)
i;n

= ��
(0)
i
:

(29)



Second, collecting terms for O(1),

�i( � 
(1)
i;n

�
X
n

wn
� 
(1)
i;n
) = �

�n

hi
( 

(0)

i+1=2;n
�  

(0)

i�1=2;n
);

� 
(1)
i;n

= ��
(1)
i
�

�n

�ihi
( 

(0)

i+1=2;n
�  

(0)

i�1=2;n
):

(30)

Finally, for O(�),

�i( � 
(2)
i;n

�
X
n

wn
� 
(2)
i;n
) = �

�n

hi
( 

(1)

i+1=2;n
�  

(1)

i�1=2;n
)� �ai

X
n

wn
� 
(0)
i;n

+Qi: (31)

If solvability condition is applied by summing Eq. (31) over wn, then

X
n

wn�n( 
(1)

i+1=2;n
�  

(1)

i�1=2;n
) = ��aihi ��

(0)
i

+ hiQi;

X
n

wn�n( 
(1)

i+3=2;n
�  

(1)

i+1=2;n
) = ��a;i+1hi+1 ��

(0)
i+1 + hi+1Qi+1;

X
n

wn�n( 
(1)
i+1;n �  

(1)
i;n
) = ��a;i+1=2hi+1=2 ��

(0)

i+1=2
+ hi+1=2Qi+1=2:

(32)

Using
P

n
wn = 1;

P
n
wn�n = 0;

P
n
wn�

2
n = 1=3, and � i;n = ( i�1=2;n+4 i;n+ i+1=2;n)=6,

we have

6
X
n

wn�n( � 
(1)
i+1;n � � 

(1)
i;n
)

= ��a;ihi ��
(0)
i
� 4�a;i+1=2hi+1=2 ��

(0)

i+1=2
� �a;i+1hi+1 ��

(0)
i+1

+ hiQi + 4hi+1=2Qi+1=2 + hi+1Qi+1:

(33)

Combining O(1) and O(1=�) conditions, we have

6
X
n

wn�n( � 
(1)
i+1;n � � 

(1)
i;n
) = 6

X
n

wn�n(��
(1)
i+1 � ��

(1)
i
)

�
6

�i+1hi+1

X
n

wn�
2
n( 

(0)

n;i+3=2
�  

(0)

n;i+1=2
) +

6

�ihi

X
n

wn�
2
n( 

(0)

n;i+1=2
�  

(0)

n;i�1=2
)

= �
2

�i+1hi+1
(�

(0)

i+3=2
� �

(0)

i+1=2
) +

2

�ihi
(�

(0)

i+1=2
� �

(0)

i�1=2
):

(34)

From Eqs. (33) and (34), we get

�
2

�i+1hi+1
(�

(0)

i+3=2
� �

(0)

i+1=2
) +

2

�ihi
(�

(0)

i+1=2
� �

(0)

i�1=2
) + �a;ihi ��

(0)
i

+ 4�a;i+1=2hi+1=2 ��
(0)

i+1=2
+ �a;i+1hi+1 ��

(0)
i+1 = hiQi + 4hi+1=2Qi+1=2 + hi+1Qi+1:

(35)

Thus, we have a di�usion-like form for the linear multiple balance method.

5. Acceleration of Linear Multiple Balance Method

Various algorithms have been developed to accelerate the source iteration for discrete

ordinates equation. Among these algorithms, the di�usion synthetic acceleration (DSA)[7]



is most popular and unconditionally stable and rapidly convergent. Recently transport syn-

thetic acceleration (TSA)[8], boundary projection acceleration (BPA)[9], and angular depen-

dent rebalance (ADR)[10] factor acceleration methods were developed. These schemes have

generality with respect to geometry, discretization scheme, and mesh shape.

To accelerate the linear multiple balance scheme, it is not trivial to derive DSA for cen-

ter angular ux. So we develop an additive angular dependent rebalance (AADR) factor

algorithm which combines boundary projection acceleration (BPA) and angular dependent

rebalance (ADR) factor acceleration. It is found that the e�ect of acceleration depends on

the weighting function (Wn = 1; j�nj; (j�nj+ 1)=2; � � � ) in the additive angular dependent

rebalance factor scheme. To solve low-order equation e�ectively, Bi-CGSTAB algorithm is

used.

Linear multiple balance equations at l + 1=2 iteration is given by

�n( 
l+1=2

i+1=2;n
�  

l+1=2

i�1=2;n
) + ��

 
l+1=2

i+1=2;n
+ 4 

l+1=2

i;n +  
l+1=2

i+1=2;n

6
= �(�s�

l
i + Si);

�n( 
l+1=2

i+3=2;n
�  

l+1=2

i+1=2;n
) + ��

 
l+1=2

i+1=2;n
+ 4 

l+1=2

i+1;n +  
l+1=2

i+3=2;n

6
= �(�s�

l
i+1 + Si+1);

�n( 
l+1=2

i+3=2;n
�  

l+1=2

i�1=2;n
) + 2��

 
l+1=2

i�1=2;n
+ 4 

l+1=2

i+1=2;n
+  

l+1=2

i+3=2;n

6
= �(�s�

l
i + �s�

l
i+1 + Si + Si+1);

�n( 
l+1=2

i+1;n �  
l+1=2

i;n ) + ��
 
l+1=2

i;n + 4 
l+1=2

i+1=2;n
+  

l+1=2

i+1;n

6
=

�

2
(�s�

l
i + �s�

l
i+1 + Si + Si+1);

(36)

and

�
l+1=2
i

=
1

2

NX
n=1

wn

 
l+1=2

i�1=2;n
+ 4 

l+1=2
i;n

+  
l+1=2

i+1=2;n

6
;

�
l+1=2
i+1 =

1

2

NX
n=1

wn

 
l+1=2

i+1=2;n
+ 4 

l+1=2
i+1;n +  

l+1=2

i+3=2;n

6
:

(37)

Considering rebalance factor in DP0 form,

 l+1
i;n

=  
l+1=2
i;n

+ f
+;l+1
i

; �n > 0;

 l+1
i;n

=  
l+1=2
i;n

+ f
�;l+1
i

; �n < 0;
(38)

then multiple balance equations at l + 1 iteration become

�n( 
l+1
i+1=2;n �  

l+1
i�1=2;n) + ��

 l+1
i+1=2;n

+ 4 l+1
i;n +  l+1

i+1=2;n

6
= �(�s�

l+1
i + Si);

�n( 
l+1
i+3=2;n �  

l+1
i+1=2;n) + ��

 l+1
i+1=2;n

+ 4 l+1
i+1;n +  l+1

i+3=2;n

6
= �(�s�

l+1
i+1 + Si+1);

�n( 
l+1
i+3=2;n �  

l+1
i�1=2;n) + 2��

 l+1
i�1=2;n

+ 4 l+1
i+1=2;n

+  l+1
i+3=2;n

6
= �(�s�

l+1
i + �s�

l+1
i+1 + Si + Si+1);

�n( 
l+1
i+1;n �  

l+1
i;n ) + ��

 l+1
i;n + 4 l+1

i+1=2;n
+  l+1

i+1;n

6
=

�

2
(�s�

l+1
i + �s�

l+1
i+1 + Si + Si+1):

(39)

Subtracting Eq. (36) from Eq. (39) and summing over weighting function Wn, we obtain



the rebalance equations as, for �n > 0,
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��sf(�
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(40)

and for �n < 0,
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(41)

where

k0 =

N=2X
n=1

Wnwn; k1 =

N=2X
n=1

Wnwnj�nj: (42)

Cell average scalar ux is obtained using rebalance factors as

�l+1
i

= �
l+1=2
i

+
f
+;l+1

i+1=2
+ 4f

+;l+1
i

+ f
+;l+1

i�1=2
+ f

�;l+1

i+1=2
+ 4f

�;l+1
i

+ f
�;l+1

i�1=2

12
: (43)

To analyze stability of the additive angular dependent rebalance (AADR) factor algorithm,

we de�ne Fourier ansatz:

 l+1
i+1=2;n

= !lAne
i�xi+1=2 ;

f
�;l+1
i+1=2

= !lF�e
i�xi+1=2 ;

�li = !lBei�xi ;

�
l+1=2
i

= !lCei�xi :

(44)

From Eq.(37), we get the following simple equation with coeÆcients of Fourier ansatz:

An

�
i2�nsin� +

��

6
(2cos� + 4)

�
= �s�B: (45)

From Eq.(38), we also obtain

C =
1

12

N=2X
n=1

wnAn(2cos� + 4)

=
1

12

N=2X
n=1

wnB
(2cos� + 4)�s�

i2�nsin� +
��
6
(2cos� + 4)

= P1B;

(46)



where

P1 =
1

12

N=2X
n=1

wn

(2cos� + 4)�s�

i2�nsin� +
��
6
(2cos� + 4)

: (47)

From Eqs. (40) and (41), two relations for the rebalance factors are given by

F+ =

�
i2k1�nsin� + k0

��

6
(2cos� + 4)

�
= k0�s�(! � 1)C; �n > 0;

F� =

�
i2k1�nsin� + k0

��

6
(2cos� + 4)

�
= �s�(! � 1)C; �n < 0:

(48)

Adding and subtracting Eq.(48) above,

(F+ � F�)(i2k1�nsin�) + (F+ + F�)

�
k0
��

6
(2cos� + 4)

�
= 2k0�s�(! � 1)B;

(F+ + F�)(i2k1�nsin�) + (F+ � F�)

�
k0
��

6
(2cos� + 4)

�
= 0:

(49)

We may simplify Eq. (49) as

(F+ � F�)P2 + (F+ + F�)P3 = 2k0�s�(! � 1)B;

(F+ + F�)P2 + (F+ � F�)P3 = 0;
(50)

where

P2 = i2k1�nsin�;

P3 = k0
��

6
(2cos� + 4):

(51)

From Eq. (50), we get

F+ + F� =
P3

�P 2
2 + P 2

3

2k0�s�(! � 1)B: (52)

Combining the above equations, we get a formula for frequency !.

!C = P1C +
1

12
(F+ + F�)(2cos� + 4)

! = P1 +
1

12
(2cos� + 4)2k0�s�

P3

�P 2
2 + P 2

3

(! � 1)

= P1 + P4(! � 1)

! =
P1 � P4

1� P4
;

(53)

where

P4 =
1

12
(2cos� + 4)2k0�s�

P3

�P 2
2 + P 2

3

: (54)

Finally, spectral radius is obtained by taking maximum value of !.



Table II: Spectral Radius and Number of Iterations

Methods � 0.01 0.1 1 10

DSA DD 0.16925(13�) 0.20888(13) 0.20238(12) 0.34051(11)

AADR0 DD 0.13129(11) 0.23099(16) 0.32209(20) 0.31471(20)

(1��) LMB 0.13131(11) 0.23101(16) 0.32195(20) 0.32368(20)

AADR1 DD 0.26316(16) 0.27540(17) 0.25229(17) 0.24711(17)

(j�j) LMB 0.26317(16) 0.27439(17) 0.25186(17) 0.25640(17)

AADR2 DD 0.17872(13) 0.18931(12) 0.16702(12) 0.38685(11)

((j�j+ 1)=2) LMB 0.17872(13) 0.18924(12) 0.16150(12) 0.15697(11)
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Figure 3: Spectral radius for various mesh cell sizes (mfp)

To assess performance of the additive angular dependent rebalance (AADR) factor accel-

eration we tested it on a sample problem. Table II shows the numerical spectral radius and

number of iterations for a homogeneous slab geometry problem which has � = �s = 1 with

vacuum boundary conditions on both sides. The criterion for average scalar ux is given 10�9

and S16 quadrature is used. The results of AADR2 indicate that it is competitive with or

outperform DSA, which results from the use of a proper weighting function. Fig. 3 shows

the spectral radius for AADR in the case of linear multiple balance method (LMB) and di-

amond di�erence method (DD) from Fourier analysis. As shown in Fig. 3, ADDR with the

weighting function Wn = (j�nj+ 1)=2 gives spectral radius < 0:2069c, whereas Larsen's DSA

scheme gives spectral radius < 0:2247c. The inversion of the low-order equation in AADR is

performed by Bi-CGSTAB algorithm, which reduces computational burden.
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Figure 4: Distribution of scalar ux for optically thick problem

6. Numerical Tests and Results

The �rst test is an optically thick problem in di�usive regime:[6]

�n
d

dx
 n(x) + � n(x) = �s

8X
m=1

wm m(x) +Q;

� = �s = 100; Q = 0:1; 0 � x � 10cm

 n(0) = 0; �n > 0;

 n(10) = 0; �n < 0; �x = 1cm; 0:1cm

(55)

The standard S16 Gauss-Legendre quadrature set is used. Fig. 4 shows the cell average

scalar uxes for the thick mesh cell and we �nd that the linear multiple balance method

(LMB) has thick di�usion limit as analytically shown.

The second problem we consider is taken from Reed[11] and consists of a slab with four

regions with distinct compositions. There is a source of magnitude 50 (arbitrary units) located

in the region where the material 1 is placed and a source of magnitude 1 in the region de�ned

by 5 < x < 6. The slab has reective boundary condition at the left end and vacuum

boundary condition at the right end. The con�guration is shown in Fig. 5. This problem

is solved with S8 approximation and error criterion is 10�9. Reference solution is obtained

by diamond di�erence of which mesh size (�) is 0:01cm. The results of diamond di�erence

method, linear multiple balance method, and linear characteristics method are shown in Fig.

6. The diamond di�erence shows strong oscillations in the optically thickest region because

mesh size is too large. For linear multiple balance method as well as linear characteristics

method, we can observe that there are little oscillations, due to multiple balances over a

spatial cell.
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7. Conclusions

We have developed a new linear multiple balance method (LMB) to get accurate solutions

for slab geometry discrete ordinates neutron transport equations. One mesh cell is divided

into two subcells with quadratic approximation of angular ux distribution and four multiple

balance equations are used to relate center angular ux with average angular ux by Simpson's

rule, leading to improved accuracy and positivity. From the error analysis, the orders of cell

truncation errors and global cell ux errors are O(�4) and the numerical results con�rmed

the accuracy of the method. The method has also di�usion limit and it was accelerated by

an additive angular dependent rebalance factor algorithm. Fourier analysis of a simple model

problem as well as numerical calculations shows that the additive angular dependent rebalance

factor acceleration algorithm is unconditionally stable with spectral radius < 0:2069c when

proper weighting functions are used. As a concluding remark, the new linear multiple balance

method with additive angular dependent rebalance factor acceleration provides high accuracy

and may o�er various advantages over the existing methods.
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