Simulation Model for Jet Flow in Liquid Injection System of CANDU-6 SDS 2

Abstract

For the performance analysis of the secondary shut down system (SDS-2), a computational fluid dynamics (CFD) model for the poison jet flow is being developed to analyze the flow and poison concentration fields formed inside the moderator tank. As the ratio between Calandria shell and the nozzle hole diameter of the injection system is so big as 1055, it is impractical to develop a full size model encompassing the whole Calandria tank. To reduce the model to a manageable size, a quarter of the five-lattice-pitch length segment of the tank was modeled by using the symmetric nature of the jet and the injected jet was treated as source term to remove the limit caused by the small diameter of the injection nozzle hole, when the grid of the calculation domain was generated. A half model calculation was performed to show the symmetricity of the quarter model. For the validation of the source treatment of the inlet flow condition, the simulation result was compared with the experimental data of the gas jet. The symmetricity was confirmed by the results of simulation the half model calculation on the symmetric line and the result of simulation for the source treatment well agreed with the experiment when a fine mesh grid structure was used near the inlet.

2000

2

2	(Shut Dow	vn System Number 2, $SDS2$) ¹ 1
		. SDS2
	가	(Gd(NO ₃) ₃)·6H ₂ O, Gadolinium nitrate solution)
	CANDU	· (CANadian Deuterium Uranium Reactor)7 ,
CANDU	SDS2	2
,		CANDU SDS2 ,
SDS2		
CANDU	가	, DUPIC (Direct Used of Spent PWR fuel in
CANDU Reactor) SDS2	CANDU	

2.

(Continuity equation)

. , ,

$$\frac{\partial \mathbf{r}}{\partial t} + \frac{\partial}{\partial x_i} (\mathbf{r}u_i) = 0 \tag{1}$$

.

•

(Momentum equation)

$$\frac{\partial(\mathbf{r}u_i)}{\partial t} + \frac{\partial(\mathbf{r}u_iu_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mathbf{m} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \overline{\mathbf{r}u_i'u_j'} \right] + S$$
(2)

(Mass transport equation)

$$\frac{\partial(\mathbf{r}Y_A)}{\partial t} + \frac{\partial(\mathbf{r}u_iY_A)}{\partial x_i} - \frac{\partial}{\partial x_i} \left(D_{AB} \frac{\partial Y_A}{\partial x_i} \right) = 0$$
(3)

(1)~(3) , **m** , u'_i fluctuation velocity , Y_A A mass

fraction, D_{AB} B A molar diffusion coefficient .

.

$$\boldsymbol{m}_{i} = \boldsymbol{r}\boldsymbol{C}_{m}\frac{k^{2}}{\boldsymbol{e}} \tag{4}$$

, k ε

.

$$\frac{\partial(\mathbf{r}k)}{\partial t} + \frac{\partial(\mathbf{r}u_jk)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\mathbf{m} + \frac{\mathbf{m}_t}{\mathbf{s}_k} \left(\frac{\partial k}{\partial x_j} \right) \right) + \mathbf{r}(P - \mathbf{e})$$
(5)

$$\frac{\partial(\mathbf{r}\mathbf{e})}{\partial t} + \frac{\partial(\mathbf{r}u_{j}\mathbf{e})}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\mathbf{m} + \frac{\mathbf{m}}{\mathbf{s}_{e}} \left(\frac{\partial \mathbf{e}}{\partial x_{j}} \right) \right) + \mathbf{r} \frac{\mathbf{e}}{k} (C_{1}P - C_{2}\mathbf{e})$$
(6)

$$C_u = 0.09, C_1 = 1.44, C_2 = 1.92, \boldsymbol{s}_k = 1.0, \boldsymbol{s}_e = 1.217$$

3.

,

3.1

(Fig. 2).

3.2

1/4

,

CFX-4.3 USER FORTRAN³ (1) ~(3) .

,

.

k-e

$$a_{p}\boldsymbol{f}_{p} = \sum_{all \ neighbors} a_{nb}\boldsymbol{f}_{nb} + S_{p}\boldsymbol{f}_{p} + S_{c}$$
(7)

. (7)	a	, f		, <i>S</i>			
р	, nb					,	
		(7)	S_p	S_{c}		· ,	
			S_p	mass flux	S_{c}	mass flux	
	$. , S_p >> a$!					
	. Table	1					

3.3

	AEA	Technology	CF	X-4.3		. (CFX-
4.3	Pre	e-processing, Solver, Post-process	sing 3		. Pre-proces	sing	
CFX_B	BUILD			,			
		,			가		,
USER	FORTRAN		, CFX-	-4.3	30 use	r routi	ne
	. CFX-4.3	Fig.	3				

e-jet

.

	1949	Hinze	Zijnen	4		
가 -			free-jet		,	,
	,					

4.1

		가		. 가	가	1m,
10cm	2.5cm			. ,	1m	
			가			
	가		Fig. 4			
2.75×1.4	m^2			40 m/s		
171×100, 171×112, 17	1×224	,	171×100			

4.2

가	가 x가 5d

(potential core region). (transitional region). "similarity" (similarity region)⁵. source-jet (Fig. 5 real-jet () . Fig.) 가 5 . Real-jet source-jet Fig. 5 Fig. 6 , Fig. 7 가 4% . Potential core 가 가 Fig. 7 가 가 x<5d) (가 3 (potential core region) () (3) 17% 가 5. 1/4 1/2 가 가 free-jet 2 가 가 가 SDS2

Nomenclature

a_{nb}	Coefficient for neighboring cell in discretization equation
a_p	Coefficient for present cell in discretization equation
$D_{\scriptscriptstyle AB}$	Diffusion coefficient
k	Turbulent kinetic energy
р	Pressure
S_p, S_c	Coefficient for the linearization of source term
u_i, u_j	Velocity component, u, v, w
u'_i, u'_j	Fluctuation velocity
x_i, x_j	Coordinate system, x, y, z
e	Turbulent energy dissipation
\boldsymbol{f}_p	Arbitrary variable in present cell
m	Viscosity
m_{t}	Turbulent viscosity
r	Density
\boldsymbol{S}_k	Prandtl number for turbulent kinetic energy
\boldsymbol{S}_{e}	Prandtl number for turbulent energy dissipation

- "Design Manual Liquid Injection Shutdown Units", Revision 6, XX-31760-DM-000, AECL (1996).
- S. Nawathe, M.K. Sapra, L.R. Mohan, M.K. Nema and S.C. Mahajan, "Development and Qualification of Liquid Poison Injection System (SDS-2) for 500 MW(e) PHWRs", Presented in Work shop on Reactor Shutdown System, IV.4.1, IGCAR, Kalpakkam (1997).
- 3. "CFX-4.2: SOLVER Manual", AEA Tech. (1997)
- J.O. Hinze and B.G. Van Der Hegge Zijnen, "Transfer of Heat and Matter in the Turbulent Mixing Zone of an Axially Symmetrical Jet", Appl. Sci. Res. A1., 435 (1949).
- Joseph A. Schetz, "Injection and Mixing in Turbulent Flow", Progress in Astronautics and Aeronautics, 68, 19, (1980)

Table 1 Source treatment for inlet conditions

	S _p	S_{c}
Mass flow rate	0.0	$ru_{inlet}A_{inlet}$
Momentum	$-\mathbf{r}u_{inlet}$	$\mathbf{r}u_{inlet}u_{inlet}$
Mass fraction	$-\mathbf{r}u_{inlet}$	$ru_{inlet}Y_A$

Fig. 1 Symmetric structure of the injection pipe in the cross section

Fig. 2. Velocity vector for steady state jet flow

Fig. 3 Structure of CFX-4.3 code

Fig. 4 Schematic diagram of the domain of free jet calculation

Fig. 5 Comparison of velocity vector for real- and source-jet

Fig. 6 Comparison of axial velocity profile

Fig. 7 Comparison of axial concentration distribution