, 2000

,

150

Abstract

The operational characteristics of the safety grade passive decay heat removal system PSDRS of KALIMER(Korea Advanced LIquid MEteal Reactor) was investigated using the code PARS2. The time required in the operation mode change of PSDRS to the circulation mode through the annular gap path between the reactor vessel and reactor baffle was calculated and the transient characteristics of the heat removal process after a reactor trip to the time the system gets the peak temperature was analyzed. Through this investigation, a systematic way of setting the initial condition for the PARS analysis was set up and the qualitative relations between the system performance and system design parameters such as the relation between the reactor baffle height and the peak temperature and the time were found.

1. Pool KALIMER 1 (IHX), (IHTS) (SGS) , [1]. (IHX) (IHTS) PHTS Pump baffle (RV) 가 , (RV) , PHTS Pump . 1 Helium PSDRS . (IHX)-(IHTS)-(SGS) _ (IHX) (Passive Safety Decay Heat Removal System ; PSDRS) PSDRS 가 Baffle overflow slot PSDRS 가 . [2] baffle (RV) 가 가 PSDRS [2] PSDRS • PSDRS 100% PSDRS , PSDRS PSDRS PARS , PSDRS . PARS2 2. Baffle, (RV) , (CV), (Air channel) PSDRS 가 PARS [3]. PARS 1

, (RV) (CV) (Air channel) , , baffel (RV) Ν node , Baffle (Air channel) Ν node . 2 Node baffel 2 (RV) Channel Ν, I J, Κ Node Ν , Nodalization , PARS PSDRS . (IHTS) (IHX) 가 100% 가 가 PSDRS 가 가 PSDRS baffle . , (RV) Helium PARS . 3. PSDRS 가 (RV) Helium 가 COMMIX-1AR/P . , 100% baffle (RV) Helium PSDRS [4] 3 . COMMIX (RV) (RV) Helium 가 가 baffle (RV) baffle , Baffle (RV) 가 , baffle IHX . (RV) 가 가 IHX

3

(1) .

$$\Delta Q = Q_{gen} - Q_{out} = \frac{\partial}{\partial t} (M \cdot c_p \cdot T)$$
(1)

, ΔQ , Q_{gen} PSDRS

, $c_p = T$

 Q_{out}

•

,

М

.

PHTS

(2) (4)

$$\int Q_{gen}dt - \int Q_{out}dt = \int_{t1}^{t2} M \cdot c_p \cdot T \cdot dt$$
⁽²⁾

$$Q_{ACC} = M \cdot c_p \cdot T \Big|_{t=t^2} - M \cdot c_p \cdot T \Big|_{t=t^1}$$
(3)

$$M \cdot c_p \cdot T\Big|_{t^2} = M \cdot c_p \cdot T\Big|_{t^1} + Q_{ACC}$$
⁽⁴⁾

$$Q_{ACC}$$
 t_1 t_2 . PSDRS
 7^{1} , 7^{1} 7^{1}
(5)

$$\boldsymbol{r}_{normat-avg} = \frac{V_{hot} \cdot \boldsymbol{r}_{hot} + V_{cold} \cdot \boldsymbol{r}_{cold}}{V_{tot}}$$
(5)

•

 V_{hot} V_{cold} , V_{tot} V_{hot} V_{cold} PHTSKALIMER[1]530, 385

가

$$530$$
, 38
 $836.93 kg/m^3$.
 $7h$

(6)

(6) (7) .

$$\Delta V = V_1 - V_0 = \left(\frac{M}{r}\right)_1 - \left(\frac{M}{r}\right)_0$$

$$\mathbf{r}_1 = \frac{1}{(1) - \Delta V}$$

$$=\frac{1}{\left(\frac{1}{r}\right)_{0}+\frac{\Delta V}{M}}$$
(7)
1 , (7)

(3)

0 1

(8)

.

.

(Decay Heat Curve)[5]

$$\int_{0}^{t} \{ \mathcal{Q}_{decay} - \mathcal{Q}_{out} \} dt = \sum_{i=1}^{t} \{ \mathcal{Q}_{decay,i} - \mathcal{Q}_{out,i} \} \cdot \Delta t_{i} = \mathcal{Q}_{ACC}$$

$$, \quad \mathcal{Q}_{decay} , \quad (8)$$

$$Q_{ACC}$$
 7 t_1 t_2 $Q_{ACC,1}$ $Q_{ACC,2}$, t

. ,

(9)

$$t = t_1 + \frac{t_2 - t_1}{Q_{ACC,2} - Q_{ACC,1}} \cdot \left(Q_{ACC} - Q_{ACC,1}\right)$$
(9)

4.2

,
$$L_{diff}$$
 , 1

가	/				PHTS Pum	р
Coastdown		,				
		가	. KALIMER			
PSDRS	2	[1][4],			(10)	(11)
ΔV_{ho}	$\Delta v_{ch} = \Delta V_{ch}$					(10)
Δh_{int}	$_{c} = \frac{L_{diff}}{1 + \left(\frac{A_{ch}}{A_{hot}}\right)}$					(11
ΔV_{hot} ΔV_{ch}	~ /		가			
, Δh_{inc}		, <i>L</i>	liff			
	(10) (11) 15.1 m ,		가			
가 .						
4.3						
	(RV)				Hel	lium
	((()))		가		(RV)
		가				
가	PSDRS			PSDRS		가
PARS		2	COMMIX	[4]	. PAF	RS
		っ フト	21- 21-	[4]	PSDRS71	
	PA	ARS	PSDRS	,	15Ditts	3
6						
5. PSDRS						
	/	가		15.1m	PSDRS	
가	15.8	3m				7 100%
		1				. 기
	ا ر-		가	71	71	
PSUBS	7	フト	Baffle Over	1 flow Slot	1	
15		- 1	Baffle Overl	flow Slot		

가 가 PSDRS 가 . PSDRS PSDRS PARS 가 / , 가 가 가 가 가 , 가 PARS / 8 4 . , 가 가 PSDRS 가 가 . 9 PSDRS . 100% 가 1.29MW PSDRS , PSDRS가 가 , 가 PSDRS PSDRS 가 가 PSDRS 가 . 10 PSDRS 11 875 48 . 9 48 가 가 PSDRS 가 가 PSDRS . 10 48 Baffle Overflow Slot 3 • 12 PSDRS 가 Baffle , L_{SLOT} 7 PSDRS PSDRS 가 가 L_{SLOT} 25% PSDRS , ± 2 ± 15 • (RV) ,

PSDRS Baffle . 6. 100% PSDRS , 48 PSDRS 가 , PSDRS . Baffle Overflow Slot 15 PSDRS . / PARS 가 가 Baffle PSDRS 가 , 25% PSDRS ± 2 가 ± 15

1. "KALIMER Preliminary Conceptual Design Report", Korea Atomic Energy Research Institute, KAERI/TR-1636/2000, Aug, 2000.

•

2. , , , "PSDRS ", ' 98 , 1998. 3. "Code PARS User's Guide", , KALIMER , LMR/FS500-CM-01/2000, Mar., 2000. , "KALIMER 4. ", '99 , , ,

, , 1999.

5. "Core Decay Heat Core Radionuclide Inventory ", , KALIMER , IOC-CD-011-1998, Dec., 1998.

Region				
А		Helium gas		
В			~	
С				~ IHX
D	IHX	~		(RV)
1	l.			

Parameter	Unit	Value	Description
L _{RV}	m	16.55	(RV)
L _{BF}	m	15.8	PSDRS
L _{SLOT}	m	0.6	Baffle
L _{HPL}	m	15.2	
L _{CHPL}	m	9.99	
D _{BFin}	m	6.83	Baffle
D _{RVin}	m	6.92	(RV)
	2	2. PSD	RS [1][4]

H (m)	()	(MW)	H (m)	()	(MW)
15.1	385.3	1.43199	15.2	410.5	1.43874
15.3	431.8	1.44587	15.4	449.1	1.45336
15.5	462.6	1.46123	15.6	472.2	1.46946
15.7	477.9	1.47807	15.8	479.7	1.48704

3.

ΔT ()	$T_{hot}()$	$T_{cold}()$	$T_{av}()$	$T_{\rm max}$ ()	$t_{\rm max}$ (sec)
10	540	530	535	602.5	26,703
40	550	510	530	603.1	24,695
70	560	490	525	604.3	26,090
100	570	470	520	605.3	25,884
130	580	450	515	606.2	24,077
160	590	430	510	607.2	25,844
190	600	410	505	608.0	23,923
220	610	390	500	609.0	24,066

4. /

1. KALIMER

