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ABSTRACT

A new method for 3-dimensional reactor core analysis is proposed in this paper. The solution procedure of

this method is composed of two step calculation. The first one is the fine mesh FDM calculation in each

radial plane, and the second one is the NEM calculation in the z direction. For consistent coupling of those

two different methods, the fission source of the NEM calculation is fixed in inner iteration and  z-

directional partial currents is used as source in the radial FDM calculation. The accuracy and stability of

this new method are shown by the successful application to the IAEA3D PWR benchmark problem and a

modified 3-dminesional EPRI-9 benchmark problem.

1. INTRODUCTION

     Currently nodal methods such as NEM (Nodal Expansion Method)[1] and ANM (Analytic Nodal

Method)[2] are exclusively favored in practical reactor core analysis because of the fast calculation speed

and accuracy comparable to fine-mesh finite difference calculations, with the aid of the assembly

homogenization[3] techniques. But, with nodal method, one cannot obtain directly detail informations



such as pin power distributions, so the so-called dehomogenization procedures are inevitable in the nodal

methods. On the one hand, in the fine mesh FDM calculation, it is possible to get the detail pin power

information, however, it demands too much calculation time.

    The objective of the present work is to develop a nodal and FDM (Finite Difference Method) hybrid

algorithm to calculate three-dimensional power distribution without the assembly homogenization by

exploiting the advantage of the two methods. Generally, material properties are fairly homogeneous in the

axial direction. This implies that a coarse mesh nodal method can be used for the z-direction approximation.

In this paper, we developed an NEM/FDM hybrid algorithm, where the 4th-order NEM approximation is

used for z-directional coarse meshes and the neutron diffusion equations are approximated by the

standard FDM in each radial plane.

 

2. NEM/FDM HYBRID METHODOLOGY

    In the NEM/FDM hybrid method, the calculation procedure is divided into two steps in every inner

iteration. The first step is 2-dimensional FDM calculation for each radial plane and the second step is z-

directional NEM calculation. Consequently, the inner iteration is composed of two step calculations, one is

the radial FDM calculation and the other one is  the z-directional NEM sweeping.

    Eq. (1) is the neutron balance equation to be solved in 3-dimensional geometry.
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 where all notations are standard.

    For the 2-dimensional radial FDM calculation, incoming neutron currents from upper and lower planes

should be determined at each plane. In the NEM/FDM hybrid method, the incoming currents are directly

available from the z-directional NEM solutions. For NEM calculation, the z-directional transverse leakage

of each node is obtained from the linear approximation of flux in radial direction.

   In the z-directional NEM calculation, the 1-dimensional flux is expanded with 4th-order polynomials and

transverse leakage is expanded with 2nd-order polynomials as in Eq. (2).
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 where expansion functions are the Legendre polynomials. Then, the NEM approximation for z-direction

can be represented in the form of Eq. (3).
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 m
iga , i=1,2,3,4 : flux expansion coefficients in z direction,

 m
gusj  : net current at nodal interface,

 m
gusj ±

, u=x,y,z, s=l,r : partial currents at nodal interface.

 Eq. (3) is solved by the conventional NEM solution procedure except the fact that x, y-directional net

currents at nodal interfaces are given by Eq. (4) which is directly derived from FDM linear flux

approximation and that fission sources are fixed at each inner iteration just like FDM inner iteration.

 ( )l
g

r
gr

gu
l
gu

r
gu

l
gum

gusj φφ
ββ

ββ
−

+
−=

)(

2
, rls ,= , yxu ,= .                                          (4)

 From Eq. (4), the z-directional average transeverse leakage of a node m can be represented by Eq. (5) using

the node average flux of node m and neighboring nodes, which are given from radial fine mesh FDM

solutions.
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 W = left node in x direction, E = right node in x direction,

 S = left node in y direction, N = right node in y direction.

 Eq. (3) is solved for the fixed fission source terms at each inner iteration to be consistent with the radial

FDM calculation. And when determining the 3rd and 4th flux expansion coefficients by solving Eq. (6) and

Eq. (7), the flux expandsion coefficients of fission source terms are also fixed, which means that the shape

of fission source is fixed during an inner iteration.
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 Eq. (1) is approximated by FDM  in a radial plane and they can be written as Eq. (8).
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 In Eq. (8), the axial flux shpae is expanded by 4th-order polynomials as Eq. (2) and source of the right hand

side is the sum of fission source and incoming currents from lower and upper plane.

    To find the solution to Eq. (1), Eq. (3) and Eq. (8) are repeatedly solved in the whole reactor core until the

convergence criteria are satisfied.

 

3. NUMERICAL TESTS



    To demonstrate the accuracy and computational efficiency of the NEM/FDM hybrid algorithm, the

IAEA3D PWR benchmark problem[2] and a modified 3-dimensional EPRI-9 problem[2] were analyzed with

a computer code based on the new method.

    First, the solutions of the IAEA3D PWR benchmark problem obtained by the new method were

compared with those of the VENTURE code, which uses the standard FDM, in Table I. Basically, the two

codes utilize the same FDM for x- and y-direction. Therefore, the numerical tests were focused on the

effects of the axial mesh size for a fixed x,y mesh system (∆x=∆y=10 cm). In Table I, one can note that the

NEM/FDM hybrid algorithm provides consistent solutions and is very insensitive to the axial mesh size.

As shown in Table I, difference in the eigenvalues between ∆z=5 and ∆z=30 is less than 2pcm. In other

words, a very large axial mesh sized, e.g., 20 cm, can be used with little compromize of the accuracy in the

NEM/FDM hybrid method. Comparing the results of the new method and VENTURE, it is observed that

the accuracy of the new algorithm with ∆z=20cm is comparable to the VENTURE solution of ∆z=2cm. Also,

it is worthwhile to note that NEM/FDM hybrid algorithm provides a comparable accuracy several times

faster than VENTURE. Meanwhile, the computer code using the new method is not fully optimized.

Therefore, discrepancy in the computing speed would be much larger if the new algorithm were accelerated

by more efficient acceleration schemes.

    Secondly, a modified EPRI-9 benchmark problem is solved with ∆x=∆y=1.4cm and ∆z=20cm. The original

EPRI-9 benchmark problem is a 2-dimensional problem with cell wise cross section, but in this study, this

problem is modified to 3-dimension problem that comprises of 120cm  active core and  top/bottom axial

reflectors of 20cm. And the incoming current zero boundary condition was imposed in z direction

boundaries. By the new method, the modified 3-dimensional EPRI-9 benchmark problem was successfully

solved using the cell wise cross sections without the assembly homogenization. The eigenvalue is 0.90128

and radial power shape is showed in Figure I.

4. CONCLUSIONS

   The nodal expansion method is consistently coupled with the finite difference method for efficient

analysis of heterogeneous 3-dimensional reactor core. In the NEM/FDM hybrid method, each axial plane is



solved by FDM and the consecutive planes are coupled via NEM using 4th-order polynomial expansion for

the flux distribution. The newly developed algorithm was compared with VENTURE in terms of accuracy

and speed over the IAEA3D benchmark problem. Also, a modified 3-dimensional EPRI-9 benchmark

problem was solved successfully. Numerical tests confirm that the NEM/FDM hybrid method is stable and

provides consistent solutions. Comparison with VENTURE shows that about 10-times larger axial mesh

size can be used in the new algorithm to obtain the comparable accuracy. In addition, we found that the

new algorithm is several times faster than the VENTURE code, despite that the new algorithm is not fully

optimized.
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Table I. Comparison of NEM/FDM hybrid and VENTURE for the IAEA3D problem (∆x=∆y=10cm)

METHOD k-eff Computing Time(sec)

∆z =  5 cm 1.029123 626

∆z = 10 cm 1.029120 219

∆z = 20 cm 1.029103 114
NEM/FDM HYBRID

∆z = 30 cm 1.029102 78

∆z =  1 cm 1.029122 1575

∆z =  2 cm 1.029115 330

∆z =  4 cm 1.029096 228
VENTURE

∆z =  0*) 1.029124 -

*) Extrapolated

CENTER

1.426 1.212 0.854

1.212 1.208 0.617

0.854 0.617

Keff=0.901280

Figure I. Radial Power Distribution of the modified 3-dimensional EPRI-9 benchmark problem
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