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Abstract

An efficient acceleration scheme is infroduced for the fime-mesh finite difference
methed, where the coarse-mesh finite difference method iz nonlinearly coupled with the
high-order finite dJifference representation of the neutron diffusion operator, The
coarse-mesh operator is iteratively corrected such that its solution is equiwvalent to that
of the fine-mesh operator, The correction  factors are updated by using  the
che-hoede-based high order seolution, net the two-node solution ag in the conwventional
nonlinear nodal methods, The efficiency and  accuracy of the new method is
demenstrated over a benchmark problem (TAEA-ZD), relative to a production code,
VENTURE, Numerical results show that the computational speed of the new algorithm

iz 10 ~15 times faster than that of VENTURE, without compromnising the accuracy of

the solution, In addition to the fast convergence, the new algorithm is easvy to implement
and alse is highly parallel,

[. Introduction

This paper is concerned with speeding up the convergence of the fine-mesh finite
difference (FWFD) method for the neutren diffusion problem, Seolving the reactor
eigemvalue problems involves two-lewel iterations: inner and outer iterations, In general,
inner iteration takes much longer time than outer iteration, Therefore, an efficient inner
iteration algeorithm is required in reducing the computing time, The line successive
overrelazation (LSCOR) scheme and the Chebwshev acceleration method are popularly
used in solving the reactor elgenwalue problem in inner and outer iterations, respectively,
Heowrerer, the convergence rate with those acceleration techniques is fairly slew when
the problem size is large as in the FWED calculations[l, 2],

The objective of thiz paper iz to dewelop a neonlinear acceleration scherme which has
a high parallelism, The basic idea of the newly dewveloped algorithm originates from the
nonlinear coarse-mesh finite difference (CHFD) scheme for the nodal methods, where
the low-order CHIFD operator is iteratively corrected through a global-local iteration so
that the final solution of the CHFD preblem iz equivalent to the high-order nodal
solution(3, 4, 5], In the present application, the high-order solution is determined by using
the FIWFD operators, This algerithm is similar to the two-zrid algorithm such as the



coarse-mesh  rebalancing (CIWVE) method[l], Howewer, unlike the CIME, the local
high-order prokblem can ke solved mdependently and the low-order CHFD operator is
nonlinearly updated through a simple arithrmetic operations in the new nonlinesr CHFD
algorithm,,

[[. The One—Node CMFD Nonlinear Algorithm

After Smith[3] intreduced the fundamental idea of the nonlinear nedal methods based
on the CWFD acceleration, Joo and Downarld] demonstrated that it was wvery efficlent
within the framework of the analvtic nodal method (ANMD and the nodal expansion
method (NEM), Recently, Moon et al[B] developed a neonlinear CWIFD method for the
analvtic function expansion method (AFEMN), where two correction factors are introduced
at every interface, instead of one factor in the conwventional scheme, Adoption of the two
correction factors is attributed to the fact that the AFEN method does not ufilize the
transverse integration procedure as in AN and NEM,

In spite of the fundamental differences hetween the one- and two-factor approaches,
a commen feature is that the correction factors for the CHWFD operators are updated by
solving a two-node preblem in both methods, ©On the one hand, in the case of the
two-factor approach, it can ke noticed that the correction factors can be determined by
solving ornly a one-node problem with a high-order method, This is because both
interface current and flux are preserved in the two-factor approach, By wirtue of this
concept, we dewveloped a new neonlinear CHRED algorithm which can significantly reduce
the computing time <f the FRFD preklem, In the new algorithmm, the CRFD and FREFD
method are nonlinearly coupled as in the conwventional nonlinear nodal methods, Howrewver,
the two correction factors are iteratively improved by solving a one-node problem with
the FWIFD method, not the two-noede problem,

The fimed-source one-node problem can be well defined by Imposing the boundary
conditions of the incoming pertial currents on the interfaces between the coarse mesh
nodes, In defining the one-node proklemn, it is wery important to ewvaluate accurate
boundary  conditions as well as the fized source distribution, Hewewer, the CHEFD
problem  provides  only  average  quantities  for the node-aweraged  fluzes  and
surface-aweraged partial currents, This difficulty is owercome by noting that the FRFD
golutions have the distributions for the boundary partial currents and fized source, In
other words, profiles of the partial currents and group fluzes from the FWFD solutions
are used as the shape functions and they are combined with the average walues from
the CHFD solutions,

In Fig, 1, the owverall flow chart of the new CKFD algorithm is  depicted
schernatically, The CKIFD soluticon provides the global eigenwvalue, awverage fluxes, and
the partial current to be used n one-node problems as the boundary conditions, It is
possible to caloulate two correctional coupling coefficients per node surface using the
equality  condifion between the currents from the CHRFD solution and the new net
currents from one-node problems, The correction factors for the CHFD operator are
iteratively updated until the global convergence is achieved,



& definite  adwvantage of the one-node-based CMRFD  algorithm  ower the
two-node -kased approach iz the reduction of the number of local problems, The mumber
of local problems in the new algorithm, to ke solved at each cuter iteration, is almost
one half and one third of the two-node-based schemes in 2-dimensional and
J-dimensional rectangular gecometries, respectively, Furthermore, the local problemns can
ke solved hdependently, Therefore, the new CWNEFD algorithm could be wery effectively
implemented on the parallel computing platforms,

Tnitialization

A A

MNomlinear CMED Calculation

o

— ~
One-Mode
Jaleulat on"'/>

TES

Defernine the shape funcfions of paral
enrenfs and fixed souree disfribution

Solwe One-Mode Problems [EMELDY
«Update D (&)
= Bave the shape funclions of parfial currents
and internodal flux distribufions

/'\ NO
Conwerped 7

TES

.
-

END

Fig, 1, Calculational flow diagram for the CHEFD algorithm

I[.1 Formulation of CMFLI} Module

The CWRFD module where all coarse meshes are elliptically coupled is responsible for
the glokal neutren balance over the whole domain, Additionally, the CIHWFD module
provides the global eigenwvalue and the pertial currents across all interface boundaries of
the coarse-mesh nodes, which are used in one-node local problems to caleulate the



correctional coupling coefficients, It should be noted that the partial currents from the
CIEFD module are used as the boundary conditions in the ocne-node calculations,

The Z-group, Z-dimensional neutron Jdiffusion equation can ke written in the following
formm:
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where all notations are standard,

In Eqg, (1), all group constants are assumed to be homogenecus within a coarse
rectangular mesh, The mesh configuration used in the dewelopment of the method is
illustrated in Fig, 2,
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Fig, 2 IMesh configuration in the CHREFD module

Integrating Eq, (1) over the spatial volume of a mesh wvields the following neutron
balance equation,
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where _.T_E_. denctes the surface-averaged gzéh group net current along the koundary,

Generally, the finite difference method is inaccurate when the mesh size iz large, To
improve the accuracy of the CWFD operator, the neutron curtents in Eq. (2) are
approximated by introducing two correctional factors, as in Bef 5 In the two-factor
CIWFD algorithm, neutron current across the right side of the (1i) mesh is defined in
the following was:
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where D;;and Dy, ; are the diffusion coefficients and ¢ is an infinitesimally small

value, In Eqs, (3) and 4), Dlx;+ &) and Xx,— 2 denote the two correction factor

which should be determined by solving one-node problerns, These factors are unknown



values untll global calculation iz completed and are updated by solving one-node
proklems during a nonlinear iteration procedure,

Equating Eq, (30 and Eq. (1) for continuity of current at the interface, we obtain the
surface flux:
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where R denotes the right boundary of the coarse-mesh (2, /) |
Introducing Eq, (B) inte Eqg, (2), the following linear matriz equation for the neutron
diffusion equation of Eg, (1),
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The iterative procedure for solving Eg, (7) includes two levels of iterative scheme
inner and outer iteration, In the CHFD module, two acceleration methods were uzed to
speed up the convergence rate: the lne successive over-relazation (LSOR) method for
the inner iteration and the one-parameter asyvmptotic source extrapolation (ASE) method
for the cuter iteration,

The CHRFD module calculates the partial current across the coarse-mesh surface by
using the Bokin natural boundary condition, that is,
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where &8 denotes the outward normal derivative, BRearranging Eg, (8) for the

Dy

incoming current wields

- _ ES‘_ .-T_E'ET g

Substituting Eq, (5) and Eq (B) inte Eq (9),  F pix) | v, Athe incoming partial
current fram the right-hand side node, can be represented as follows,
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When determining the boundary condition of the one-nede problem, partial currents
of Eg, (100 is used as the amplitude of the partial currents along the interface,

I[.2 Forrmulation of FMFD Module

In previcus works for the nonlinear CWFD acceleration, the correction factors are
updated kv solving two-node problems defined en the neighboring twe nodes, This is



because the net currents are used as the boundary conditions in the local high-order
calculation, Hewewer, in this study, the high-crder seolution to caleulate the correction
factors is obtained by solving a one-node local problerns represented by the fine-rmesh
finite difference method,

The one-node problemn is defined in a domain corresponding to a single node of the
CIHFD problem, The one-node problemn consists of many fine meshes, as shown n
Fiz 3.
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Fig, 3, Interfaces coupling between CHRIFD and FMWFD

The one-node probletn is a fized source problem and the seolution iz obtained using
the conventional finite difference methoed, ie., without any correction factor, The major
concern of the ene-node problem is hoew to freat the boundary condition and how to
Incorporate the coupling between the local domains, With respect to the boundary

conditicn, the known walue is only the J min Eq, (10), the surface-averaged incoming

current of the coarse-mesh problem, Howewer, as shown in Fig3d, this current cannot
represent the actual incoming currents of the fine-meshes along the surface of the local
domain, It is worthwhile to note that the profile of partial currents is required to solwe
the one-node problem,

In this paper, we define the boundary conditions of the one-node problem in a in the
following form:

—-— I
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where of; is the shape function representing the distribution of the normalized incoming

current, and I'p and I denote the houndaries of fine-mesh and coarse-mesh swstems,

respectively, Unfortunately, the incoming current distribution along the interfaces are
usnally unknowr, This Jdifficulty can ke owercome by using the relation hetween
incoming and outgoing currents, The relation means that the incoming  current
digtribution iz equal to the outgeing current distribution from its neighkoring node,
Basically, the one-node problems can be solved independently, Howewer, for better
cohvergence, ohe-node problems is solved in a sweeping sequence in this work, The
sweeping starts with the left-bottom local problemn and ends with the right-top problem,
Therefore, the incoming currents of left and bottorm sides of a cne-node problem are the



outgoing currents caleulated in adjacent domain at the current step and those of right
and top sides are the outgoing currents caleulated at the previous sweeping, That is,
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where q and p denote the g-th CHWFD iteration and p-th FMFD iteration, respectively,
To calculate the fized soumce in the one-node problemn, the flux distribution should be
given, As in the medulation of partial currents, the flux distribution within the coarse

mesh (£ i1 iz defined as
Dy (2,3 = @ 45 X d4i(x.) (13)
where ?,;‘,-, the magnitude function, is the wolume-awveraged flux from the CHRFD
calculation, and qﬁ,;‘,-(x,y} , the shape function, is the neormalized flux distribution from

the previous one-node calculations,

After completion of the one-node caleulations, the twe correction factor is updated,
which is subsequently used in the next CHFD iterations, In order to calculate the
correctional coupling coefficients ('E? Y, we assume that the surface-awveraged current of
CIFD is equal to the surmmation of fine mesh currents:
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where N iz the number of fine meshes along a boundary of the one-node problem,
Using Eq, (3), Eq. (4) and Eq. (14), the two correction factors can be improved, For
example, at the left surface of the (i+1,j) node and the right surface of the (ij) node,
the correction factors can be expressed by
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wheie j’:H_": means the net cwrrent from the node (41,7 to the node (4,7 and
FUY from the node (07) to (+17), In Eq. (15), @, is the integrated walue of the

coarse mesh surface fluzes ower the node boundacy,
I[II. Numerical Testing and Hesults

The applicakbility and accuracy of the new nonlinear CIFD algorithm were tested
against an well-established benchrmark problem! two-dimensiconal International &tomic
Energy Agency benchmark problem (2D-IAEAJGR], The IAEA PWER test problem is a
simplified o ditmensional and two-group benchmark problem, The reactor consists of a



two-zone core conhtaining 197 fuel assemblies each hawving a width of 20 cm, The core
15 reflected by 20 cm of water, Each of nine fully-inserted control rods are represented
as smeared absorbers inoa single fuel assembly,

EBased on the new algorithm, a computer code, named CHRFM-2D, was developed,
First, the results of CHREN-ZD were compared with these of the VENTURE code to
verify the consistency of the ocne-nede CMNFD algorithmm, Basically, both codes use the
garme finite difference method as the neutronic seolwer, As shown in Fig, 4, the
multiplication  factor and  the normalized  agsembly  power from  CHREFM-Z2D and
VENTUERE are exactly identical for the same spatial mesh configuration (20x20 grid
per assembly), This result indicates that the nonlinear iteration scheme of CHRFL-ZD is
consistent and stable, Table [ summarizes the execution time of both codes, CHREFW-ZD
appears to provide the same accuracy with approximmately 10 percents computation effort
of the VENTURE code,

Secondly, the result of CLFMI-ZD was compared with the reference solution[f]
obtained with a fine-mesh nodal caleulation, In the case of Z20x720 nodes per assembly,
the mazximum error in the assembly power I less than one percent at one of the low
power  assemmblies adjacent to the reflector, It should ke noted that the ermroars in
assembly powers were reduced with refined mesh svstem, e, 32232 mesh confisuration
per assermbly, These results indicate that a spatial mesh of 10 cm iz sufficient to
achieve high accuracy as well as the reasonable execution time,
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Fig 4, Error in normalized assembly power for the JAEA 2D benchmmark problemn



Takle I, Summary of results for the [AEA-ZD PWE benchmark problem
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20 =20 20 =20 372 %32
Figenwalue Error(3:)

0,003 0,003 0,001
[ Reference : 1.02959 |
Mlsz, Error in Power -0,95 -0,95 -0.35
&vz, Error in Powrer 035 03& 01z
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In the nenlinear coupling of CHEFD and FWFD, two factors mainly affects the
computational performance, One iz the update frequency of the correction factors for the
CIFD operator, Mumerical tests show that the best efficiency can be obtained when the
FIWIFD problems are solved every 4 ~6 CHIFD iterations, The other impeortant factor is
the size of each local problem, Generally, oo many local problemns result in low
numerical performance, while foo large local problems may cavse degradation of the
convergence rate, We observed that the one-nede problem of dmd ~ 10x10 fine-mesh
grid provided fast converzgence,

IV. Conclusions and Recommendations

In this paper, a new two-factor neonlinear CHWIFD scheme, distinguished from the
previcus two-node approaches, is deweloped to accelerate the fine-mesh finite difference
method for the neutron diffusion equation, The bottomline of the new algorithm is that
both fine-mesh FDIM and coarse-mesh FDR iz coupled in & manner of global-local
interactions, The nonlinesr correction factors are updated by solving only a local
problem defined in a single node of the ccarse-mesh problem, not the two-node problem
as in the conventional nonlinear nodal algeoritlims, The one-node problem can be well
defined by using the partial currents at the bowundaries, which are inferred from the
coarse mesh solutions,

Mumerical tests for a Z-dimensional benchimark PWER problem dermmonstrate that the
new algorithm is much faster, 10 ~15 fimes, than the VENTURE code, which utilizes
the standard acceleration scheme, Also it is confirmed that the new algeorithm is stakle
and provides almeost the same solutions as the fine-mesh operator, In the new algorithim,
mest computing time is expended for solving the local preklems since the CREFD
problem requires negligible computing time relative to the FWFD problern, Furthermore,
the tine-consuming one-nede problems are  solved  independently,  Therefore, the
performance of the new algorithm would ke maximized on the parsllel platforms,
Eesides, the new nonlinear CHRFD algorithm can easily ke applied to the hexagonal
geotmetiy as in the LWFER core,

The nonlinear CHWFD acceleration, based on the two-node local problem, turned out
to be werv efficient for warious nedal methods, Heowewer, the present work shows that
both CRFD and wery high order operator, ie, FWRFD, can ke coupled wia the one-node



local problermn, This means that the newly deweloped algoritlhm can be an alternative
nolinesr CHWFD acceleration scheme for the nodal methods which does not utilize the
so-called transverse integration procedure,
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