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Abstract

A neurofuzzy method is used to estimate the DNB protection limit using the measured average temperature and

pressure of a reactor core. The neurofuzzy system parameters are optimized by two learning methods. A genetic

algorithm is used to optimize the antecedent parameters of the neurofuzzy inference system and a least-squares

algorithm to solve the consequent parameters. Two neurofuzzy inference systems are used according to the

pressure and temperature regions. The proposed method is applied to the Yonggwang 3&4 nuclear power plant

and the proposed method has 5.84 percent larger thermal margin than the conventional Westinghouse TOT∆  trip

logic. This simple algorithm can provide a good information for the nuclear power plant operation and diagnosis

by estimating the DNB protection limit each time step.

1. Introduction

The DNB (Departure from Nucleate Boiling) correlation provides the expected value of fuel rod surface heat

flux that will cause DNB for various coolant conditions and flow geometry. The ratio of the expected DNB heat

flux to the actual fuel rod heat flux at a particular time during an incident is called the DNBR (DNB Ratio) at that

time. A correlation limit DNBR is established based on the variance of the correlation such that there is a 95

percent probability at a 95 percent confidence level that DNB will not occur when the calculated DNBR is at the

correlation limit DNBR. The conservative design method that the calculated DNBR is greater than the correlation

limit DNBR on the limiting power rod is established by considering all parameters at fixed conservative values.

The variable value design method used in this work assures that the DNBR on the limiting power rod is greater

than the correlation limit DNBR by statistically combining the effects of uncertainties of the input parameters.

Therefore, the design limit DNBR applicable to all Condition I and II events is determined by utilizing the DNBR

sensitivities and variances in three input parameter categories: plant operating parameters, nuclear and thermal

parameters and fabrication parameters [1].

The protection system of the conventional pressurized water reactors designed by Westinghouse is an analog

system. However, the Korea Standard Nuclear Power Plant (KSNPP) and the recently designed nuclear reactors

employ a digital protection system. The ABBCE-type nuclear power plants employ the Core Protection Calculator

System (CPCS) which continuously calculates DNBR and Local Power Density (LPD) in order to assure that the
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specified acceptable fuel design limits such as DNB and fuel centerline melt are not exceeded during anticipated

operational occurrences. The CPCS has approximately 6,000 constants and the CPCS is designed by deciding the

CPCS constants [2]. This large number of constants makes the software V&V (Verification and Validation) more

difficult.

Since the conventional Westinghouse DNB protection logic is implemented on analog circuits, the logic must

be very simple. The Westinghouse TOT∆  protection logic heavily restricts the operation region by applying the

same logic for a full range of pressure in order to maintain its simplicity. However, if the DNB protection logic is

implemented in a digital processor, a little complexity may be allowed to increase the thermal (or operation) margin.

The objective of this work is to estimate the DNB protection limit according to operating conditions by using a

neurofuzzy method and to compare the thermal margin by this method and that by the conventional method. The

effect of the neutron flux difference between upper and lower half cores will be neglected. In other words, this

effect is assumed to be the same in the two methods.

Fuzzy system parameters such as membership functions and the connectives between layers in a neural

network are tuned by two learning methods to minimize the errors between the target values and the trained

values. A genetic algorithm is applied to optimize the membership function parameters and a least-squares

algorithm to solve the connectives. Since DNB data have two different characteristics according to the pressure

and temperature region, two neurofuzzy inference systems are used according to the pressure and temperature

regions.

The proposed method was applied to the Yonggwang 3&4 nuclear power plant.

2. Design of a Genetic Neurofuzzy Inference System

A fuzzy inference system consists of situation and action pairs  where conditional rules in if/then statements

are generally used. Adapting fuzzy systems would be the desirable objective. Such neuronal improvements of

fuzzy systems as well as the fuzzification of neural network systems aim at exploiting the complementary nature of

the two approaches; the fuzzy and neural network systems. Their composite is usually called as a neurofuzzy

system.

In a fuzzy inference system, the i -th rule can be described using the first-order Sugeno-Takagi type [3] as

follows.
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where

Lxx ,,1 L  = input variables to the neurofuzzy inference system,

iLi AA ,,1 L  = antecedent membership function of each input variable for the i -th rule( i = 1, 2, ..., n ),

iy  = output of the i -th rule,
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ijq = weighting value of the j -th input onto the i -th output,

ir  = bias of the i -th output.

n is the number of rules and L  the number of input variables. There is no restriction on the shape of a

membership function. In this work, for small number of the parameters that are tuned, the following symmetric

Gaussian membership function is used.
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where ijc  denotes a center position of a peak of a membership function for the i -th rule and the j -th input, and

ijσ  its sharpness.

The output of a neurofuzzy inference system with n  rules is obtained by weighting the real values of

consequent part for all rules with the corresponding membership grade. The output is obtained as follows.
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Equation (4) can be expressed as follows:

).(

)()(

11

222112111111

nnLLnn

LLLL

rqxqxw

rqxqxwrqxqxwy

+++
+++++++++=

L

LLL
 (7)

The output can be rewritten as the following vector form:

qwTy = , (8)

where the vectors w and q are defined as

[ ]TnLnLn wwxwxwxwxw LLLLL 11111=w , (9)

[ ]T
nnLLn qqqqqq 0101111 LLLLL=q . (10)

The membership value for rule i , iw , means a compatibility grade between antecedent parts of a rule. The

multiplicative weight in Eq. (6) is preferred over the minimum weight because of its smoothness properties. The

neurofuzzy inference system described above is shown in Fig. 1.

Fuzzy system parameters such as membership functions and the connectives between layers in a neurofuzzy

inference system must be optimized for good performance. This is accomplished by adapting the antecedent

parameters (membership function parameters) and consequent parameters (the polynomial coefficients of the

consequent part) so that a specified objective function is minimized. The adaptation methods of most neurofuzzy

systems rely on the gradient-descent optimization. However, in this work, two learning methods were combined to
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optimize the antecedent and consequent parameters because the method shows better performance than any

other method. The methods are a genetic algorithm and a least-squares method. The genetic algorithm is used to

optimize the antecedent parameters ijc and ijσ , and the least-squares algorithm to solve the consequent

parameters ijq  and ir .

2.1 Antecedent Parameter Optimization

Genetic algorithms for optimization were formally introduced in the 1970s by John Holland [4]. The continuing

performance improvements of computational systems have made them attractive for some types of optimization.

Many optimization methods move from a single point in the decision space to the next using some transition rule

to determine the next point. This point-to-point method is dangerous because it is a perfect prescription for

locating false peaks in many peaked search spaces. By contrast, genetic algorithms work from a rich database of

points simultaneously climbing many peaks in parallel. Thus, the probability of finding a false peak is reduced

over methods that go point to point. Therefore, genetic algorithms are less susceptible to getting stuck at local

optima than conventional search methods.

Many search techniques require much auxiliary information such as derivatives in order to work properly. By

contrast, genetic algorithms have no need for all this auxiliary information. Genetic algorithms use random choice

as a tool to guide a search toward regions of the search space with likely improvement [5]. Despite of these

advantages, however, genetic algorithms tend to be computationally expensive.

In genetic algorithms, the term chromosome  typically refers to a candidate solution to a problem, often encoded

as a bit string. Each chromosome can be thought of as a point in the search space of candidate solutions. The

genetic algorithms process populations of chromosomes, successively replacing one such population with

another.  The genetic algorithms require a fitness function that assigns a score to each chromosome in the current

population. The fitness of a chromosome depends on how well that chromosome solves the problem at hand [6].
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Fig. 1. Fuzzy inference system.
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After an initial population of chromosomes is randomly generated, the typical genetic algorithm evolves the

population through the three operators; selection, crossover and mutation operators. The selection operator

selects individuals (chromosomes) in the population for reproduction. The goodness of each individual depends

on its fitness. The fitter the chromosome, the more times it is likely to be selected to be reproduced. After two

individuals are chosen from the population using the selection operator, the crossover operator randomly

chooses a crossover site along the bit strings and exchanges the subsequences before and after that crossover

site between the two individuals to create two offspring. The two new offspring created from this mating are put

into the next generation of the population. By recombining portions of good individuals, this process is likely to

create even better individuals. With some low probability, a portion of the new individuals will have some of their

bits flipped. Mutation can occur at each bit position in a string with some probability, usually very small. Its

purpose is to maintain diversity within the population and inhibit premature convergence.

Most genetic algorithms follow the procedures in the Fig. 2 as explained above.

The number of the antecedent parameters in the neurofuzzy inference system is nL ××2  in case that a

membership function has two parameters. L  is the number of input variables and n  is the number of the rules. To

use a genetic algorithm, a solution to a given problem must be represented as a chromosome. The genetic

algorithm then creates a population of solutions and applies genetic operators such as selection, crossover and

mutation to evolve the solutions in order to find the best one. The three most important aspects of using genetic

algorithms are (1) definition of the objective function, (2) definition and implementation of the genetic

representation, and (3) definition and implementation of the genetic operators.

Generate random initial population

Evaluate population

Selection operator

Terminate
search?

Crossover operator

Mutation operator

no

yes

Start

Stop

Fig. 2. Diagram of genetic algorithms.
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A genetic algorithm uses a cost function that evaluates the extent to which each individual is suitable for the

given objectives such as maximum error together with small overall error. The fitness of an individual

(chromosome) is calculated by means of the energy of the individual. Each chromosome contains the antecedent

parameters ijc  and ijs . The chromosome that has lower energy has higher fitness. The energy functions are

defined by the following two equations.
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{ }NrNrr yyyyyyE −−−= ,,,max 22112 L , (12)

where

N  = number of data pairs,

rky  = target output for the k -th input data ( )Lxx ,,1 L ,

ky  = output calculated from a neurofuzzy inference system for the same input data.

1E  and 2E  are overall sum of squared errors and maximum absolute error, respectively. The fitness function is

given as follows.

( )21exp EEF βα −−= , (13)

where α  and β are weighting coefficients.

To increase the efficiency of the conventional genetic algorithm, three methods are applied [7]. At first, the

proposed genetic algorithm has initial coarse tuning characteristics by initially representing each parameter in a

chromosome by a small bit number. If the parameters in a chromosome are represented by big bit numbers, the

genetic algorithm can find the accurate optimal points in a limit of resolution but needs much more time to reach a

convergence point. Therefore, it is necessary to represent it by a big bit number as many chromosomes (solution)

gradually approach the optimal points. By this method, the genetic algorithm has initial coarse tuning and final

fine tuning characteristics. The crossover site is selected by two ways. The first is that the crossover site is

selected randomly in a chromosome. The second is that the crossover site is selected between only parameters in

a chromosome. This method slows a premature convergence without reaching optimal solutions and speeds up a

final convergence. Also, a portion of the population of chromosomes with higher fitness in a priori generation is

added to a new generation. And then, the same portion of the population of chromosomes with lower fitness in

the total new generation is  removed. This is to inhibit final drifting without convergence.

2.2 Consequent Parameter Optimization

The back-propagation algorithm was developed to train the fuzzy logic system so as to match desired output-

actual output pairs. Because the fuzzy logic system is nonlinear in its adjustable parameters, the back-propagation

algorithm implements a nonlinear gradient optimization procedure and can be trapped at a local minimum and

converges slowly. If we fix some parameters of the fuzzy logic system, the resulting fuzzy system is equivalent to

a series expansion of some basis functions. This basis function expansion is linear in its adjustable parameters.

Therefore, we can use the least-squares method to determine the remaining parameters. For example, if we fix the
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membership function parameters in the first-order Takagi-Sugeno fuzzy model, the inference system output is

written by Eq. (8). In case that there exist N  data pairs ),,,( 21 yxxx LL , the output y  and inputs Lxxx L,, 21

are N - dimensional column vectors, the consequent parameters are chosen such that the data satisfy the

following equation:

qWy T= , (14)

where y  is the output data and the matrix W  from Eq. (9) includes the input data defined as, respectively

[ ]TNyyy L21=y ,

( ) ( ) ( )[ ]TNTT
wwwW L21= .

N  is the number of the input-output data pairs. The controller outputs are represented by nLN )1( +× -

dimensional matrix with N rows equal to the number of data pairs and nL )1( +  columns. In order to solve the

parameter vector q  in Eq. (14), the matrix W should be invertible but is not usually a square matrix. However, the

vector can be solved using the pseudoinverse as follows:

( ) WyWWq
1−= T . (15)

The least-squares method is a one-pass regression procedure and is therefore much faster than the back-

propagation algorithm.

2.3 DNB Protection

Using the optimized parameters, the T∆  (the temperature difference between the hot leg and the cold leg)

value is calculated where DNB may take place at a measured pressure and a measured average temperature. The

T∆  protection limit is established based on the measurement errors and the variance of the estimated value so

that there is a 95 percent probability at a 95 percent confidence level that DNB will not occur when the calculated

T∆  is at the T∆  protection limit. Therefore, the T∆  protection limit is defined as follows:

σε 645.1−∆−∆=∆ oestimatesp TTT , (16)

where

estimateT∆  = T∆  calculated by the proposed algorithm,

oT∆  = rated T∆ ,

ε  = measurement uncertainty (refer to Table 1),

σ  = standard deviation of difference between the actual values and the estimated values.

3. Application to the Yonggwang 3&4 Nuclear Power Plant

The design limit DNBR was assumed to be 1.493 (refer to [2][8]). Also, in order to generate DNB data, the same

assumptions that had been used in obtaining the Westinghouse DNB protection limit were applied. The major

assumptions used in calculation are as follows [9]:

1) The axial power distribution is a 1.55 chopped cosine shape.
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2) The nuclear enthalpy rise hot channel factor ( )N
HF∆  is  a design hot channel factor N

HdF ∆  for 100 percent rated

or greater power levels, and for power levels less than the rated power N
HF∆  is given by

            ( )[ ]PFPF N
Hd

N
H −+= ∆∆ 13.01)( , (17)

        where P  = power level.

3) The coolant flow rate is the design value that is usually about 5% less than the best estimate flow.

4) The bypass flow is excluded from the available core flow.

5) The coolant flow to the hottest coolant channel is reduced by 5 percent.

Except for the above parameters, the other DNB input parameters were considered to be nominal values. As the

core power and inlet temperature vary at a given pressure, the vessel average hot-leg temperature is calculated

using the COBRA code when the minimum DNBR of the limiting power rod is equal to the design limit DNBR. The

DNB data calculated from the COBRA code are given in Fig. 3. Figure 3 shows two different characteristics as

denoted by symbols ‘x’ and ‘+’. Therefore, two neurofuzzy inference systems are used according to the

pressure and temperature regions separated by the straight line as shown in Fig. 4. About a half of the DNB data

are used to train the neurofuzzy inference system and the remaining data are used to verify the inference system.

The number of the inputs into each neurofuzzy inference system is two and the inputs to the inference system

are the pressure 1x  and average temperature 2x . Also, the target output ry  is T∆ .

The tuning parameters that are tuned by the genetic algorithm are the center value ijc  and standard deviation

ijs  of a peak of the Gaussian function. Their initial values were randomly represented by the chromosomes of the

population. The number of rules in an inference system was selected to be 2. The initial values for this genetic

algorithm are as follows;

Population size = 30

Crossover probability = 100%

Mutation probability = 3%

Maximum generation = 200

Constants for the fitness function; 10,1 == βα .

After the inference systems are trained for 400 generations, the results are shown in Figs. 5-10. The consequent

parameters are calculated by Eq. (15) for a population of chromosomes every generation. The finally trained

membership functions are shown in Figs. 5 and 6.

Figure 7 shows the actual and estimated values. The T∆ values where DNB occurs at each pressure and

average temperature are estimated accurately. Figure 8 shows the total squared error and maximum error between

the estimated T∆  and the actual T∆ . The total squared error and maximum error decrease gradually as the

generation increases. Figure 9 shows the fitness functions. The fitness function increases gradually. Figure 10

shows the distribution of the errors between the estimated T∆  and target T∆ . Its distribution is similar to the

Gaussian distribution. Based on this distribution, the standard deviation σ is Fo091164.0 . In order to have
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more conservative feature, the measurement uncertainty and the σ645.1  are subtracted from the estimated T∆

to obtain the DNB protection limit. Figure 11 shows the case that the proposed algorithm was applied to data that

had not been used for the training. From the figures 5-11, although the algorithm was applied to the arbitrary

measured pressure and average temperature, it is known that it gives an accurate DNB protection limit.

A steady-state thermal margin was compared between the Westinghouse DNB protection system and the

proposed one. The thermal margin may be defined as 0TTsp ∆∆  at nominal cold leg temperature and RCS

pressure. The nominal cold leg temperature and RCS pressure are Fo5.564  and psia2250 , respectively. The

rated T∆ , 0T∆  is given as Fo5.56  and the T∆  protection limit calculated by the proposed algorithm is

Fo3308.69  at the nominal cold leg temperature and RCS pressure. Therefore, the thermal margin of the proposed

algorithm is 122.62%.

For a 1.55 chopped cosine shape at steady-state condition, the Westinghouse TOT∆  trip setpoint is

determined from the following equation [8]:

( ) ( )[ ]oavgoavgosp PPKTTKKTT −+−−∆=∆ 321 , (18)

where

oT∆  = indicated T∆  at nominal plant conditions,

avgT∆  = measured average coolant temperature,

avgoT∆  = reference average coolant temperature at nominal plant conditions of rated power,

P  = measured RCS pressure,

oP  = reference RCS pressure at nominal plant conditions of rated power,

The thermal margin of the Westinghouse DNB protection system may be written as [8]

2
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∆
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∆

∆
, (19)

where

2382.11 =K  (from ref. [8] and Table 1)

014846.02 =K  (from ref. [8])

FT o
o 5.56= .

The conventional TOT∆  trip logic has the thermal margin 116.78 percent. The proposed method has 5.84% larger

thermal margin than the conventional TOT∆  trip logic.

4. Conclusions

A neurofuzzy inference method was applied to estimate the DNB protection limit using the measured average

temperature and pressure. Fuzzy system parameters such as the membership functions and the connectives



10

between layers in a neural network are optimized by two learning methods. The learning methods are a genetic

algorithm to optimize the antecedent parameters and a least-squares algorithm to solve the consequent

parameters.

The network was trained by using DNB data of the Yonggwang 3 and 4 units. The DNB data are the inlet and

outlet temperatures where the minimum DNBR of the limiting power rod is equal to the design limit DNBR at a

given pressure. The inputs to the neurofuzzy inference system are the average temperature and pressure of the

reactor core and the output is the temperature difference T∆  between inlet and outlet. Since DNB data have two

different characteristics according to the pressure and average temperature, two neurofuzzy inference systems are

used. The T∆ , which induces DNB at a given average temperature and pressure, is estimated from this proposed

algorithm. The measurement error and the uncertainty of the estimation algorithm are subtracted from the

estimated T∆  in order to establish the setpoint T∆  so that this algorithm has some conservative features. Even

though the rule number of this algorithm is small, the estimate is accurate. The proposed algorithm has 5.84

percent larger thermal margin than the conventional TOT∆  logic.

It is recommended to accomplish more realistic and exact DNB protection limit by adding the coolant flow rate

and axial power shape to the input of the neurofuzzy inference system using the DNB data on the coolant flow

rate and axial power shape.
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Table 1. Measurement errors of DNBR calculations [2].

Parameters Range R Variance (σ2=R2/12)

Calorimetric 4.0% 1.3

Tavg(±2o F) 4.9% 2.01Calibration

Pressure (±8psi) 1.5% 0.19Errors

Signal linearity, reproducibility,
and bistable error

10.73% 9.6

Total Variance 13.10 (σ =3.62%)

Setpoint Uncertainty 5.96% (1.645σ)



12

Table 2. DNBR sensitivities and uncertainties of the Yonggwang 3&4 nuclear power plant [2].

Parameters Nominal value (µi) Standard deviation (δi) Sensitivity (Si) δi ⁄µi

Primary coolant flow rate 1.0 0.025 1.3937 0.0250

Core power 1.0 0.01 -1.8789 0.0100

Core inlet temperature [oF] 564.5 1.5 -8.1070 0.0027
Primary system pressure [psia] 2250 30 2.2852 0.0134

Nuclear enthalpy rise hot
channel factor

1.55 0.0243 -1.2455 0.0157

Engineering enthalpy rise hot
channel factor

1.0 0.015 -0.4492 0.0150

Engineering heat flux hot
channel factor

1.0 0.015 -1.0021 0.0150

T/H code 0.025 1.0 0.0250

Fig. 3. Actual DNB data. Fig. 4. Separation of the data region for two
neurofuzzy inference systems .

Fig. 5. Finally tuned membership functions for the
first inference system.

Fig. 6. Finally tuned membership functions for the
second inference system.
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Fig. 7. Comparison of actual and trained T∆ . Fig. 8. Total squared error and maximum error.

Fig. 9. Total squared error and maximum error. Fig. 10. Distribution of errors between the
estimated and actual values.

Fig. 11. Comparison of actual and trained T∆
using nontrained data.
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