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Abstract

Characteristic analyses are performed for the compressible one-dimensional two-fluid model to

investigate the well-posedness of the governing differential equations and conditions for choked flow.

The momentum flux parameters are introduced to consider the effect of void fraction profile and

velocity profile across the flow area, which represent flow regime.  It is shown that the compressible

one-dimensional two-fluid model is well posed as an initial value problem with certain restrictions on

the momentum flux parameters. The choked flow condition is also calculated for the one-dimensional

two-fluid model with momentum flux parameters and is compared with that resulted from conventional

model. It is suggested that the momentum flux parameters should be used for the one-dimensional two-

fluid model.

1. Introduction

The well-posedness of the governing differential equation for the one-dimensional two-fluid model as an

initial value problem is analyzed by the characteristic analysis (Lyczkowski, 1978;Ramshaw 1978;

Stuhmiller, 1977; Jones and Prosperetti, 1985). From those studies, it is well recognized that the basic

form the governing differential equations for the one-dimensional two-fluid model is ill-posed as an

initial value problem. To resolve this intrinsic problem, there were lots of efforts to make the two-fluid

model stable by considering the effect of virtual mass force (Lahey, 1980), phase-to-interface pressure

difference for each flow regime (Hancox, 1980; Banerjee, 1980). However, the issue is still unsolved.

Recently, Song (1998) proposed the use of momentum flux parameters to resolve this problem. The

momentum flux parameters represents the flow morphology, that is, changes in void fraction profile and

velocity profile across the flow area. They mathematically demonstrated that the incompressible one-

dimensional two-fluid model is well-posed by incorporating the momentum flux parameters. Also by

employing simplified flow structure, Song (1999) constructed a flow structure by using existing

correlation Co and experimental velocity profile. Song (1999) calculated the momentum flux parameters



for the whole range of flow regime. It is shown that the one-dimensional two-fluid model is well-posed

for the simplified flow structure. As the previous researches were restricted to the incompressible one-

dimensional two-fluid model, we will extend the argument to the compressible one-dimensional two-fluid

model.

When we consider the compressible flow, we need to look at the choked flow condition. The choked flow

is defined as the condition wherein the mass-flow rate becomes independent of the downstream

conditions. As discussed by Trapp (1982), the path lines for a acoustic signal propagation are established

from a characteristic analysis of the governing differential equations in the form of a system of the first-

order, quasi-linear, partial differential equations. As the actual nozzle geometry of the critical flow is

multi-dimensional, multi-dimensional analyses were sometimes employed to calculate the critical flow

rate based on actual nozzle geometry (Rivard 1980; Minato 1988). However, the system analysis

computer codes, such as, RELAP5/MOD3 (Ransom 1995) and CATHARE (Micaelli, 1988), are using

one-dimensional two-fluid model. The multi-dimensional effect is  hidden in the discharge coefficient,

which depends on the nozzle geometry, such as, lenth and L/D. In Rivard (1980) and Minato (1988) the

flow regime dependent void fraction profile and velocity profile were not accounted for. Therefore, we

also would like to investigate the effect of momentum flux parameters on the two-phase critical flow.

2. The general form of one-dimensional two-fluid model

Here, we consider the compressible one-dimensional two-fluid model. The continuity equation is as

follows

        ∂(ρgαg)/∂t +∂(ρgαg ug)/∂z = Γg          (1)

        ∂(ρ fαf)/∂t + ∂(ρ fαfuf)/∂z = Γf           (2)

If we consider the equilibrium mass transfer between phases, the entropy equation is coupled with other

equation. For the characteristic analysis, the following form of the entropy equation is used by

Trapp(1982) by neglecting the non-differential terms.

       ∂Sg/∂t + ug∂Sg/∂z - KSg
*(∂p/∂t +ug∂p/∂z) =  0      (3)

       ∂Sf/∂t + uf∂Sf/∂z - KSf
*(∂p/∂t +uf∂p/∂z)  =  0       (4)

K=1 corresponds to the thermal equilibrium case and K=0 corresponds to frozen flow case without mass

exchange. Here, we assumed that the non-equilibrium mass transfer consists of the term proportional to

the equilibrium mass transfer rate and term independent of derivatives. Here, we assumed that the bulk



pressure of each phase is same and represent it as p. As the density is a function of pressure and entropy

in general, the material derivative of density is written as

              Dρ k/Dt = (∂ρk/∂p)Dp/Dt + ∂ρk/∂s k Dsk/Dt             (5)

The adiabatic speed of sound for each phase is defined by          (∂ρk/∂p)s = Ck
-2                                (6)

Then the continuity equation for each phase is presented as

    αkCk
-2(∂p/∂t+uk∂p/∂z) +αkρ k∂u k/∂z +ρk∂αk/∂t+ρku k∂αk/∂z = Γk –(∂ρ k/∂sk)Ds k/Dt   (7)

The equation (3) or (4) can replace the last term in equation (7).  In case of frozen flow, the characteristic

roots of energy equation are independent from continuity and momentum equations.

The general form of the momentum equation is written as

   ∂(αkρ kuk)/∂t + ∂(αkρkCvkuk
2)/∂z   = - αk∂pk/∂z  - 4αkwτkw/D + ∂[αk(τkzz +τkzz

T )]/∂z

           + αkρkg cosθ + (pki – p k) ∂αk /∂z + v kiΓk+ Mik         (8)

The generalized force term M ik consists of transient forces such as Basset force and virtual mass force. Cvk

is momentum flux parameter that accounts for the variation of velocity and void fraction over a cross-

section.  It contains information on the flow structure in the flow area normal to the main flow direction.

   Cvk=<αku k
2>/<αk><<uk>>2                                                                    (9)

Where, the quantity is area average and the quantity in the <<>> is void fraction weighted average (Ishii

1984).

3. Characteristic Analysis of Governing Differential Equations

The well-posedness of the governing differential equation as an initial value problem is analyzed by a

characteristic analysis (Lyczkowski, 1978;Gidaspow, 1974; Stuhmiller, 1977; Jones and Prosperetti,

1985). Here, we look at the stability of two-fluid model by performing a characteristic analysis for the

governing differential equations and derive the stability criteria. Let a vector x = (α, ug , uf , p,  s g, s f ), then

the above equation can be written as



                        [A] ∂x/∂t + [B] ∂x/∂z = [C]                                 (10)

, where [A], [B], [C] are the coefficient matrices. The dependence of the solution on the prescribed initial

data can be reduced to an investigation of the roots of equation

                    Determinant {[A] λ - [B]} = 0                 (11)

, where  we have introduced the characteristic curve  λ. If we have real roots of λ for satisfying

Determinant {[A]λ - [B]}= 0, then the set of differential equation is hyperbolic.  If we have complex

conjugate root of λ, then the set of differential equation becomes elliptic.  In this case, the above set of

equation becomes ill  posed as an initial value problem.

Choked flow is defined as the condition wherein the mass-flow rate becomes independent of the

downstream conditions. The path lines for a acoustic signal propagation are established from a

characteristic analysis of the system of first-order, quasi-linear, partial differential equations. The eigen-

value λ of the characteristic equation is related to the general Fourier component of the solution for the

locally linear system. The real part of the root gives the velocity. The imaginary part of the root gives the

rate of growth and decay of the signal along the path. For a hyperbolic system all the roots are real and

non-zero. A choked flow condition exists when no information can propagate into the solution region

from the exterior. Such a condition exists when

                   λj = 0 for some j    and   λi  ≥ 0 for some  i≠j                        (12)

Lahey (1980) considered the effect of virtual mass force term in generalized force M ik on the stability of

the governing differential equations. Hancox (1980) proposed to consider the phase-to-interface pressure

difference for each flow regime to construct well-posed one-dimensional two-fluid model. Banerjee

(1980) considered the phase-to-interface pressure difference for stratified flow. Incorporation of those

terms in the one-dimensional two-fluid model resulted rather well-posed system. By neglecting the effect

of those terms, we will focus on the role of momentum flux parameters on the stability and choked flow

condition. Then, the momentum equation for compressible one-dimensional two-fluid model in equation

(7) can be simplified as below

          ∂(αρgug)/∂t + ∂(αρgCvgug
2)/∂z   = - α∂p/∂z  + Mig

*        (13)

            ∂(αfρgug)/∂t + ∂(αfρgCvgug
2)/∂z   = - αf∂p/∂z  - Mif

*       (14)

where αf = 1- α. Mig
*  and Mif

* represent non-derivative terms.  It can be written as below    



     αρg∂ug/∂t+αρg(2Cvg-1)ug∂ug/∂z+ρg(Cvg-1)ug
2∂α/∂z +αρg(Cvg-1)ug

2∂ρg/∂z

                                                                         = - α∂p/∂z -ugΓg + M ig
*           (14)

  (1-α)ρ f∂uf/∂t+(1-α)ρ f(2Cvf-1)uf∂uf/∂z-ρ f(Cvf -1)uf
2∂α/∂z +(1-α)ρ f(Cvf-1)uf

2∂ρ f/∂z

                                                                         = - (1-α)∂p/∂z -ufΓf + Mif
*      (15)

4. Characteristic analysis for one-dimensional two-fluid model

The stability of the governing differential equations for general one-dimensional two-fluid model is

determined from equation (7), (3), (4), (14), and (15). For simplicity let’s consider the case of frozen flow.

Then the characteristics of entropy equation are independent of other equations and determined as ug and

uf. Also, we consider isothermal process, where the density is only function of pressure. Then, the system

of first order differential equations to be considered becomes as follows

    αCg
-2(∂p/∂t+ug∂p/∂z) +αρg∂ug/∂z +ρg∂α/∂t+ρgug∂α/∂z = Γg  –(∂ρg/∂sg)Dsg/Dt    (16)

  (1-α)Cf
-2(∂p/∂t+uf∂p/∂z) +(1-α)ρ f∂uf/∂z-ρ f∂α/∂t-ρ fuf∂α/∂z = Γf –(∂ρ f/∂s f)Dsf/Dt   (17)

  αρg∂ug/∂t+αρg(2Cvg-1)ug∂ug/∂z+ρg(Cvg-1)ug
2∂α/∂z

                                     = - αρg(Cvg-1)ug
2 Cg

-2∂p/∂z - α∂p/∂z -ugΓg + M ig
*           (18)

  (1-α)ρ f∂uf/∂t+(1-α)ρ f(2Cvf-1)uf∂uf/∂z- ρ f(Cvf-1)uf
2∂α/∂z     

                                  =  - (1-α)ρ f(Cvf-1)uf
2Cf

-2∂p/∂z - (1-α)∂p/∂z -ufΓf + Mif
*      (19)

By neglecting non-derivative terms, the characteristic matrix [A]λ - [B] becomes

ρg(λ-ug)                     -αρg                          0                          αCg
-2(λ-ug)

-ρ f(λ-uf)                      0                              -(1-α)ρ f                (1-α)Cf
-2(λ-uf)

-ρg(Cvg-1)ug
2     αρg[λ-(2Cvg-1)ug]              0                    -α[1+ρg(Cvg-1)ug

2 Cg
-2]

 ρ f(Cvf-1)uf
2                 0             (1-α)ρ f[λ -(2Cvf-1)uf]      -(1-α)[1+ρ f(Cvf-1)uf

2Cf
-2]  (20)

The stability of the governing differential equation and condition for choking depend on the root of λ

for the equation below

                                  Determinant of {[A] λ-[B]} = f(λ)= 0                                 (21)

The conventional one-dimensional two-fluid models assumed that the value of momentum flux parameter

is unity. They did not consider the effect of void fraction profile and velocity profile. Let αf= 1- α. If we

put Cvg and Cvf as 1, then the function f(λ) becomes

       f(λ)=ρ fαρgαf[(λ-ug)2(λ-uf)2(ρ fαCg
-2+ρgαfCf

-2) - ρgαf(λ-ug)2-ρ fα(λ-uf)2] = 0  (22)



 It is a fourth order polynomial in λ. It becomes positive when λ is a big positive or big negative number.

As the function becomes negative when λ equals ug or u f, it always has two real roots satisfying f(λ)=0.

These two characteristic velocities are related to the sound speed of two-phase mixture. The other two

roots can be real or complex depending on the magnitude of relative velocity. As discussed by

Lyczkowski (1978) the magnitude of relative velocity should be same order as that of homogeneous

mixture sound speed to have 4 real roots unless relative velocity is zero. As that situation is quite rare in

actual flow situation, the other two roots of equation (22) become complex. This indicates that the one-

dimensional two-fluid model becomes easily ill-posed as an initial value problem.

Without performing detailed numerical calculation as those by Lyczkowski (1978), we can obtain

similar conclusion in the following way. When the gas and liquid velocities are relatively small

compared to the speed of sound of gas and liquid, equation (22) can be approximated by

                       f(λ)  ≅ - ρ fαρg(1-α)[ρg(1-α)(λ-ug)2 + ρ fα(λ-uf)2]             (23)

It is always negative. It means that equation (22) does not cross the x-axis when λ is at similar order of

magnitude as that of gas or liquid velocity. In this case, f(λ)=0 has two real roots and two complex roots.

Then one-dimensional two-fluid model becomes ill-posed.   As the gas and liquid velocities are usually

much smaller than the sound speed in practical cases, the ill-posedness is quite a problem for one-

dimensional two-fluid model.

As discussed in the previous researches, it can be assumed that the value of the momentum flux

parameters is very close to 1. Therefore, we can approximate the above matrix by the following matrix by

neglecting the terms including (Cvg-1) and (Cvf-1).

   ρg(λ-ug)                     -αρg                          0                          αCg
-2(λ-ug)

  -ρ f(λ-uf)                      0                              -(1-α)ρ f                (1-α)Cf
-2(λ-uf)

       0                     αρg(λ-Cvgug)                     0                               -α

       0                               0                    (1-α)ρ f(λ -Cvfuf)              -(1-α)               (24)

  

When we consider the effect of void fraction and velocity profiles by introducing Cvf and Cvg , we can

obtain similar expression as that of equation (22) as below.

               f(λ) = ρ fαρgαf[(λ-Cvgug)(λ-ug)(λ-Cvfuf)(λ-uf)(ρ fαCg
-2+ρgαfCf

-2)

                                         - ρgαf(λ-ug)(λ-Cvgug)-ρ fα(λ-uf)(λ-Cvfuf)] = 0            (25)

As the coefficient of the λ4 is positive, this function is also positive when λ is big positive or negative

number. The behavior of this equation will be similar to that of equation (22), as the value of Cvg and Cvf

is quite close to unity in the actual flow as discussed in the previous researches (Song 1998; Ishii 1984).   

However, the behavior of the equation (25) is very different from that of equation (22), when λ is close



to gas or liquid velocity and it is much less than the speed of sound.   In this case, equation (25) can be

approximated as

                       f(λ) ≅-ρ fαρgαf{αfρg[λλ-λ(Cvg+1)ug+Cvgugug]+αρ f [λλ-(Cvf+1)u f λ+Cvfuf uf]} = 0   (26)

 The exact form of the determinant for incompressible flow discussed in the previous research.  The

exact form for the incompressible flow is

                            f(λ) = -ρ fαρgαf[αfρg(λλ-2λCvgug+Cvgug ug)+αρ f (λλ-2Cvfuf λ+Cvfuf uf )] = 0   (27)

Equation (27) can two real roots, if momentum flux parameters Cvg and Cvf behave in a such way that

following condition is met. Let S = ug /uf and call it slip ratio and let R= αρ f/((1-α)ρg) and call it

modified density ratio. And assume that liquid velocity is positive. As discussed in Song(1998) equation

(27) is satisfied when either of following inequality is met

                         Cvf   ≥ ¼ [1/R+ 1 ] S2 /(S  - 1),   S > 1         (28)

         Cvg  ≥ 0.5(1+R) + 0.5[(1+R)2-4(1+R)RCvf1/S2(S-1)]1/2 –RCvf1/S     (29)

         Cvg  ≤ 0.5(1+R) - 0.5[(1+R)2-4(1+R)RCvf1/S2(S-1)]1/2 –RCvf1/S      (30)

This feature is fundamentally different from that of equation (23). This enables equation f(λ)=0 to have

4 real roots more easily. Then, the generalized two fluid model becomes well-posed as a initial value

problem in a broader range.

As the actual nozzle geometry of the critical flow is multi-dimensional, multi-dimensional analyses were

sometimes employed to calculate the critical flow rate based on actual nozzle geometry (Rivard 1980;

Minato 1988). However, the system analysis computer codes, such as, RELAP5/MOD3 (Ransom 1995)

and CATHARE (Micaelli, 1988), are using one-dimensional two-fluid model. The multi-dimensional

effect is  hidden in the discharge coefficient, which depends on the nozzle geometry, such as, lenth and

L/D. In Rivard (1980) and Minato (1988) the flow regime dependent void fraction profile and velocity

profile were not accounted for. Therefore, we would like to investigate the effect of momentum flux

parameters on the two-phase critical flow.

From equation (26) we can easily notice that the critical flow condition for two-phase flow is also

affected by the momentum flux parameters. Song (1999) calculated values of momentum flux parameters

which renders well-posed one-dimensional two fluid model for wide range of flow.   When momentum

flux parameters are not considered, the choked flow condition is determined from the equation below

             f(λ)=ρ fαρgαf[(λ-ug)2(λ-uf)2(ρ fαCg
-2+ρgαfCf

-2) - ρgαf(λ-ug)2-ρ fα(λ-uf)2] = 0  (22)

When α=0 or α=1, the quantity in the bracket f(λ)=0 requires that

                             λ=  uf  +/-  Cf  or    λ=  ug  +/-  Cg                    (31)

Let’s simplify the equation by introducing R and S. Then the above equation becomes



       f(λ)=ρ fαρgαf uf
2ρgαf[uf

2(λ*-S)2(λ*-1)2(RCg
*-2+Cf

*-2) - (λ*-S)2-R(λ*-1)2] = 0  (32)

Where λ*=λ/uf and Cg
* = Cg/uf, Cf

* = Cf/uf. When the momentum flux parameters are considered, the

choked flow condition is determined from the equation below

       f(λ)=ρ fαρgαf uf
2ρgαf[uf

2(λ*-CvgS) (λ*-S)(λ*-Cvf)(λ*-1)(RCg
*-2+Cf

*-2)

- (λ*-S) (λ*-CvgS)-R(λ*-1)(λ*-Cvf
 )] = 0  (33)

- 

5. Application of proposed arguments

For convenience, we can assume that the liquid velocity is 1m/s.  At pressure of 1.17 Mpa, ρg=5.9795

kg/m3 , ρ f=879.55 kg/m3,  Cg
*= 503.8 m/s, Cf

*= 1348.5 m/s. S can be determined from distribution

parameter Co. Then we can determine λ* as a function of void fraction. According to Ishii, for bubbly and

slug flow when the void fraction is less than 0.7, a lot of data for pipe flow was be correlated as

                            Co= (1.2-0.2√(ρg/ρ f))(1-e-18α)                                 (34)

By definition average slip ratio is determined as

                            S=ug/uf=(1-α) Co/(1- Coα)                                  (35)

The momentum flux parameters can be obtained from Song(1999) as a function of average void fraction

for simplified flow for the whole range of flow regime. Then we can determine the roots of

characteristic equations as a function of void fraction.

For the two-fluid model without momentum flux parameters, let’s plot the terms in the bracket of

equation (22), when liquid velocity is 1m/s at various void fractions.

                    f(x, α)=[uf
2(x-S(α))2(x-1)2(R(α)Cg

*-2+Cf
*-2) - (x-S(α))2-R(α)(x-1)2]          (36)

The points at which the function f(x,α) meets the x-axis are the roots of the characteristic equation. Fig. 1

shows that the function has only two real roots. The two real roots correspond to the sonic velocity of

two-phase mixture. The sonic velocity is shown below as a function of void fraction.

For the two-fluid model with momentum flux parameter, the roots are determined from the following

equation

                     g(x,α)=[uf
2(x-Cvg(α)S(α))(x-S(α))(x-Cvf(α))(x-1)(R(α)Cg

*-2+Cf
*-2)

                              - (x-Cvg(α)S(α))(x-S(α) - R(α)(x-Cvf(α))(x-1)]          (37)
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Fig. 1 Plot of function f(x, α)

Fig. 2 Sonic velocity as a function of average void fraction

By taking values of momentum flux parameters from Song(1999), we can calculate above functions.

Let’s plot the function. As the value of the momentum flux parameters is close to 1, the overall shape of

the curve is same as equation (36). However, the behavior is very different when x is close to 1.
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Fig. 3 Plot of function g(x, α)

Fig. 4 Plot of function g(x, α)

It is shown that the function g(x, α) has two real roots near x=1.0 and two real roots near x=+/-500, that

makes the one-dimensional two-fluid model hyperbolic. The small roots near liquid velocity correspond

to propagation velocity of void fraction wave. The big roots near +/-500 correspond to the two-phase

sonic velocity.  Within the range of average void fraction of 0.2-0.7, the sonic velocities are calculated.

It is shown that the sonic velocity is very close each other in Fig. 5. Since Song (1999) suggested

momentum flux parameters for the whole range of void fraction, we can calculate choked condition for

the whole range of void fraction.
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Fig. 5 Two-phase sonic velocity ( rg: w/, rf: w/o momentum flux parameter )

6. Conclusions

The characteristic analyses showed that the compressible one-dimensional two-fluid model is well

posed as an initial value problem with certain restrictions on the momentum flux parameters. The

choked flow condition is determined. The sample calculation by using simplified flow structure at

typical condition demonstrates the feasibility of proposed approach. Therefore, it is suggested that the

momentum flux parameters should be used for one-dimensional two-fluid model.
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