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1. Introduction 

 
In this paper, two types of analyzes of two sub-cell 

balance methods (LDEM-SCB) which were 

implemented in the MUST (Multi-group Unstructured 

geometry SN Transport) code[1] are performed for 

understanding of their computational characteristics. 

The first one is a numerical analysis to understand the 

convergence of the spatial differencing of the sub-cell 

methods[2,3] which are devised to solve three-

dimensional discrete ordinates transport equation with 

tetrahedral meshes. The second one is the well-known 

asymptotic analysis in the thick diffusion limit to know 

if the sub-cell methods have the corresponding 

discretization schemes of diffusion equation in this limit. 

 

2. Asymptotic Analysis in Thick Diffusion Limit 

 

In thick diffusion limit[3], a spatial difference method 

is known to have good accuracy if the method has its 

corresponding accurate diffusion discretization 

including appropriate boundary conditions in this limit. 

Our analyses are done only for the problem interior. The 

analysis begins with the following scalings : 
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where   is a small parameter ( 0 ). Then the 

angular fluxes are expanded by the Talyor’s series in 

this small parameter as follows : 
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Then, Eq.(1) and Eq.(2) are substituted into the 

discretized one-group transport equation obtained by 

using the sub-cell balance methods with linear 

discontinuous expansion. After that, the coefficients for 

each power of   are equated to obtain a hierarchy of 

equations. The integration of the equation for the 

coefficients of 1  over the directions leads to the fact 

that the leading-order angular flux )0(  is isotropic. 

Some algebra show that the leading-order sub-cell 

average angular fluxes of LDEM-SCB(0) and LDEM-

SCB(1)[2,3] are isotropic and so the leading point 

fluxes are isotropic because they can be represented in 

terms of the sub-cell average fluxes. Second, the 

integration of the equations for the coefficients of 
0 over directions reveals the continuity of the leading-

order scalar fluxes. For LDEM-SCB(0), this equation 

says the continuity of the only face average leading-

order scalar fluxes while it says the continuity of the 

point leading-order scalar fluxes for LDEM-SCB(1). 

However, the continuity in LDEM-SCB(1) is valid if the 

incoming partial currents of the points is continuous. 

Next, the integration of the equation for the coefficients 

of 0 over directions after multiplying it with 

m̂ represents the first-order current in terms of the 

leading-order scalar fluxes ( )0( ). Some algebraic 

manipulations show that both methods yield the 

desirable expressions for the first currents at points (or 

vertexes) that are exact for any linearly dependent 

leading-order scalar fluxes as in Ref. 4. This expression 

is given by 
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where i means a vertex point. Also, this expression 

means the first-order currents at four vertex points for 

each tetrahedral mesh are same. These first-order 

currents are accurate because the exact current is 

constant in a mesh with a linear trial space of the 

leading-order scalar flux. The final equation which leads 

to a contribution of a sub-cell to the discretized 

diffusion equation can be derived by integrating the 

equation for the coefficients of 1  over directions. For 

LDEM-SCB(0), this equation for the sub-cell 1 is given 

by 
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where the last term means the surface-average first-

order partial current terms. Then, Eq.(5) is transformed 

into the equation which is represented in terms of the 

surface average quantities because the leading-order 

point scalar fluxes are not continuous across the mesh 

faces. The resulting equation is the contribution of the 

sub-cell 1 to the discretized diffusion equation. This 

same procedure can be also applied to the 

corresponding sub-cell of the neighboring cell through 

the face 1. Then, the final discretized diffusion equation 

is obtained by adding these two equations and the first-
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order partial current terms (i.e., )( )1(f

pJF 
) are cancelled 

out during adding two equations. 

The discretized diffusion equation for LDEM-SCB(1) 

can be derived by using a similar procedure described 

above while there is a different aspect that the final 

discretized diffusion equation is obtained by summing 

all the equations for all the sub-cells sharing a node and 

that the leading-order point scalar fluxes are the final 

unknown. For example, the contribution of sub-cell 1 of 

mesh k to the discretized diffusion equation is given by 
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3. Convergence of Spatial Differences 

 

This section numerically analyzes the order of 

convergence for the sub-cell balance methods as mesh 

refinement in the transport regime. For this purpose, we 

devised a test problem which is a simple cubic box. The 

problem size both in x- and y-directions changes 

depending on the z-direction mesh size (or number of z-

direction meshes) while the z-direction problem size is 

fixed to 0.1cm. The boundary conditions both for x- and 

y-directions are all reflective while the ones for z-

direction are vacuum. We used the following one-group 

cross sections : 11 49,50   cmcm s . So, the mean 

free path is small (i.e., 0.02cm). Also, we considered an 

inhomogeneous source of 10#/cm
3
sec which is 

uniformly distributed in this problem. The seven levels 

of the mesh refinement are considered to check the 

order of the convergence. For all the levels, the problem 

is divided into cubic boxes and each cubic box is sub-

divided into six tetrahedrons. The number of cubic 

boxes for all the levels are fixed to 2 along the x- and y-

directions (nx=ny=2) but the number of cubic boxes 

along the z-direction (nz) for the levels 1, 2, 3, 4, 5, 6, 

and 7 are 2, 4, 8, 16, 32 ,64, and 128, respectively. So, 

the side lengths (hz) of the cubic box are 0.1/nz. Also, 

we set the x- and y-direction side lengths of the cubic 

boxes to be the same as hz. We used the Chebyshev-

Legendre quadrature set having 2(azimuthal) x2 (polar) 

directions per octant. Actually, the analytic solutions for 

each level of mesh refinement can be analytically 

obtained by solving one-dimensional S4 transport 

equation because this problem is actually one-

dimensional one in z-direction. We compared the point-

wise L2 norms of the errors in the scalar fluxes of 

LDEM-SCB(0) and -SCB(1) with those of DFEM 

(Discontinuous Finite Element Method)[4], the fully 

lumped DFEM and the mass lumped DFEM[3] in Fig. 1. 

This figure shows that LDEM-SCB(0) and -SCB(1) 

have the first and second-order convergences, 

respectively. As expected, it shows that LDEM-SCB(1) 

has higher order of convergence that LDEM-SCB(0) 

and the fully lumped DFEM. Also, it is noted that the 

point-wise L2 norms of the errors of LDEM-SCB(1) is 

smaller than those of DFEM and the mass lumped 

DFEM for all the levels. 

 

 
Fig. 1 Comparison of the L2 norm of errors as mesh 

refinement 

 

4. Summary and Conclusion 

 

We performed the asymptotic thick diffusion limit 

and analyzed the order of convergence as mesh 

refinement in the transport regime for two-sub-cell 

balance methods. The results show that these sub-cell 

balance methods have thick diffusion limits and that 

LDEM-SCB(0) and –SCB(1) have the first and second-

order convergences, respectively. In particular, it is 

shown that LDEM-SCB(1) have smaller L2 norms of 

errors than DFEM in the test problem. 
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