Signal Characteristics of Guided Wave for Condenser Tube of NPP

Lee Dong Min^{a*}, Choi Sang Hoon^a, Yang Tae Yeong^a ^{,a}Korea Plant Service & Engineering, Technical Research & Development Institute ^{*}Corresponding author: <u>ldm5220@kps.co.kr</u>

1. Introduction

A Condenser is a large heat exchanger of the shell and tube type. Cooling water enters through the waterbox, through the tubesheet and into the tubes(about 80,000tubes/unit). The shell side of the condenser receives steam from the low pressure turbines exhaust. The steam is cooled to a liquid by passing over the tubes where the cooling water is circulated. Because seawater is used as a coolant, condenser tubes are easily damaged. For such a reason, nondestructive testing conducted periodically. But nondestructive testing takes a lot of manpower and time. Guided wave technique can overcome these shortcomings.

In this study, we made an effort evaluating a guided wave defect signal.

2. Methods and Results

2.1 Dispersion curves for condenser tube

Generating a torsional guided wave, we use the MsS sensor (magnetostrictive sensor). The T-wave mode is like a shear wave in a material and has one displacement component along the circumferential direction of the tube. Fig.1 shows the theoretical dispersion curve of guided wave in a condenser tube.

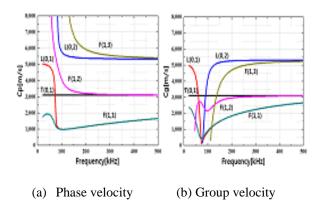


Fig. 1. Dispersion curve of guided wave

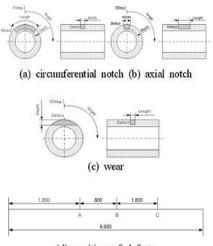

2.2 Specimens

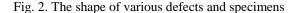
Fig.2 and Table.1 shows the test shape of specimens and specification.

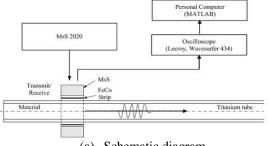
-Material : titanium

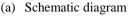
-OD : 22.225mm

- -Thickness: 0.71mm
- -Length : 6m
- -Defect section area : 3%, 5%, 7%, 10%
- -Wear depth : 10%, 30%, 50%

(d) position of defects

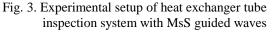



Table.1. Defect-size specification

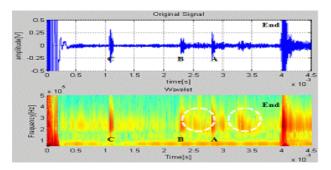

	Circ	umferenti al	notch	
Туре	Angle	Depth[m]	Length[mm]	Defect area[%]
A	70.8	0.350	0.33	
В	170.3	0.210	0.33	10
С	349.6	0.070	032	
	87	Axial notch		
Туре	Width[mm]	Depth[m]	Length[mm]	Defect area [%]
A	0.34	0.350	13.60	
В	0.33	0.210	22.60	10
С	0.32	0.070	67.68	
	91 161	Wear	40 200	9x 94
Туре	Depth[%]	Length[mm]	angle["]	
A	50	10	0	
В	30	10	0	
С	10	10	0	

2.3 Test equipment

The MsS instrument system(model MsS2020) was used in order to generate and receive the guided wave signal. Fig.3 shows a schematic diagram and detail of this system. The Optimized MsS probe was excited with tone-burst of a given frequency and digital oscilloscope was used in collecting data.


Transactions of the Korean Nuclear Society Autumn Meeting Gyeongju, Korea, October 25-26, 2012

(b) Experimental details and MsS (c)



2.4 Experimental methods

MsS probe that has 250kHz center frequency was installed in the end of the tube specimens. Guided wave signal was collected by using the pulse-echo method. Then, data was compared for analysis.

2.5 Signal characteristics by the type of defects

The responded signals from the defects show a nondispersive characteristic of the torsional wave mode (T(0,1)). Fig.4(a) shows a 10% depth of a notch defect signals in the circumferential direction. It is evident that a responded signal linearly increase as the defect area grows. Fig.4(b) shows the axial notch signal. But we cannot find a torsional responded signal. The reason for this is to be closely related to the axial cross-section area of the defect. From the above results, we learned, it is difficult to finding an axial notch defects. But we can determine the location of the defect through a timefrequency analysis. In case of a circumferential notch, we can see a location of the defect. Fig.4(c) shows the wear defect signal, from where we can distinguish defect signal.

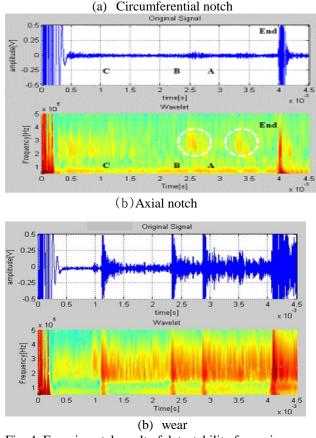


Fig. 4. Experimental result of detectability for various defects

3. Conclusions

The defect signal of a condenser tube has been evaluated by using the torsional guided wave.

The results of this study showed that:

- 1) Circumferential notch defect signal increases proportionally along with the growing defect area. But we cannot find a axial notch signal.
- 2) Though we cannot distinguish the axial notch by the torsional wave, we can determine the location of the defect through the mode conversion signal.

REFERENCES

- T. Hayashi, "Numerical Simulation of Guided Wave Propagation", Journal of the Japanese Society for Non-Destructive Inspection, Vol. 52, No. 12, pp. 662-665, (2003)
- [2] H. J. Shin, Joseph L. Rose, S. j. Song "Inspection of Heat Exchanger Tubing Detects with Ultrasonic Guided Waves" Journal of the Korea Society for Nondestructive Testing. Vol.20, No. 1, pp.1-9, (2000)
- [3] 정용무, "자기변형 스트립 탐촉자에 의한 유도초음과 모드 변환에 대한 실험적 검증 및 해석", 비파괴검사학회지, Vol. 29, No. 2, pp.93-97, (2009)