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1. Introduction 

 
The concept and some numerical results of nonlinear 

acceleration of the nodal diffusion method were first 
reported in [1, 2]. An explicit formula of the so-called 
coarse-mesh finite difference (CMFD) method for 
nodal diffusion equations was given for the first time in 
the literature (to  the author’s knowledge) in Sutton [3] 
(although its idea was referred to Smith). The CMFD 
method is popularly used in the current reactor design 
and analysis [4, 5], in which nodal parameters are 
provided by isolated single-assembly lattice calculation. 

The  fine-mesh heterogeneous transport (high-order) 
calculation was accelerated by a balancing equation 
over a coarse-mesh phase space in a nonlinear iteration 
scheme, also resulting in a diffusion-like finite 
difference form of low-order equation [6, 7]. The low-
order equation consisted of homogenized parameters 
based on equivalence theory. A modern form of this 
procedure (with explicit formula) also turned into 
CMFD methodology [8, 9]. 

We proposed a partial current-based CMFD (p-
CMFD) method a few years ago [10, 11] as an 
alternative to the CMFD method, that shows 
significantly improved convergence performance. 

This paper revisits p-CMFD, expounding why it 
performs better, based on physical plausibility, 
theoretical argument, and Fourier convergence analysis. 

 
2. Description of p-CMFD Method 

 
Let us first consider the fine-group neutron transport 

equation with Legendre expansion of the scattering 
term, 
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where g is the fine-group index. After angle-integration 
of Eq. (1), we define condensed, homogenized cross 
sections on coarse-mesh cells by flux-weighted volume 
and energy “integration” of the resulting equation. It is 
then converted to the neutron balance equation on 
coarse meshes without approximation: 
 

where i is the index of coarse-mesh cell, is is the index 
of surface of the corresponding coarse-mesh cell, and G 
is the coarse-group index. 

Now, let us obtain the equation of the p-CMFD 
acceleration methodology [10, 11]. At the surface 
(i+1/2) between coarse-mesh cells i and i+1, the 
outgoing and incoming partial currents are related with 
the corresponding cell-average scalar fluxes, 
respectively, as:  
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where , 1/ 2


G iD is arbitrary; usually chosen as the 

coupling coefficient determined in ordinary finite 

difference method. The two correction factors , 1/ 2
ˆ

G iD
  

and , 1/ 2
ˆ

G iD
  are defined to preserve the respective partial 

currents as: 
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where the partial currents and cell-average fluxes are 
obtained from the high-order transport equation (1). 
Then, the net current is obtained from Eq. (3) as: 
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The net current relation (Eq. (5)) is then substituted into 
Eq. (2). The result is a finite difference form of low-
order diffusion-type equations called p-CMFD equation 
that can be easily solved: 
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in one-dimensional case (two- and three-dimensional 
cases are similar). The solution is then “modulated” to 

, , , , ,

1
( ) ( ) , (2)G

is G tG i G i GG i fG i G i
is Gi eff

A J is
V k


      



   



Transactions of the Korean Nuclear Society Autumn Meeting 
Gyeongju, Korea, October  25-26, 2012 

 
be used in the right hand side of Eq. (1) for next 
iteration. 

Note that it does not require to define and provide 
discontinuity factors explicitly, although surface flux is 
allowed to be discontinuous. The two correction factors 
(per coarse-mesh cell per direction) play an important 
role of equivalence parameters; consistent with the 
generalized equivalence theory in homogenization. 

However, in the CMFD method, the net current is 
related with the cell-average fluxes as  
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where , 1/ 2


G iD is arbitrarily chosen but , 1/ 2

ˆ
G iD  is defined 

to preserve the net current. Since , 1/ 2
ˆ

G iD  is used for both 

node i and i+1, one correction factor is used per coarse-
mesh cell per direction in CMFD. This is incompatible 
with the generalized equivalence theory, lacking one 
degree of freedom. 

 
3. Key Results of p-CMFD vs CMFD 

 
We performed Fourier convergence analysis on p-

CMFD and CMFD for fixed-source problems [10-12] 
with diamond difference (DD) scheme for various q’s 
(q= granularity, the number of fine-mesh cells in a 
coarse-mesh cell). Fig. 1 shows the improved 
convergence behavior of p-CMFD over CMFD. 
Numerical test results on realistic core problems are 
available in [10-12 ]. 
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Fig. 1. Results of Fourier analysis of CMFD and p-CMFD 
with DD, c=0.99, and S16. 

 
A recent study [13] provides Fourier convergence 

analysis on p-CMFD, CMFD and related methods for 
eigenvalue problems in the case of q=1. The 
discretization scheme used is step characteristic (SC). 
Fig. 2 shows the significantly improved behavior of p-
CMFD over CMFD. 

 
4. Concluding Remarks 

 
This paper describes and compares performance of p-

CMFD and CMFD as acceleration methods of the 
transport calculation. p-CMFD provides significantly 
improved performance due to: i) the use of two 

correction factors, that is consistent with the 
equivalence theory in homogenization (this does not 
require additional computational load), and ii) Eq. (3) 
for p-CMFD is more physically based than Eq. (7) for 
CMFD. 
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Fig. 2. Results of Fourier analysis of CMFD and p-CMFD 
with SC, c=0.9, and S10. (EVP = eigenvalue problem, FSP = 
fixed source problem, reproduced from [13]) 
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