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1. Introduction 
 
A response spectrum analysis (RSA) has been widely 

used to evaluate the structural integrity of various 
structural components in the nuclear industry. However, 
solving the large and complex structural systems  
numerically using the RSA requires a considerable 
amount of computational resources and time. To 
overcome this problem, this paper proposes the RSA 
based on the model order reduction (MOR) technique 
achieved by applying a projection from a higher-order 
to a lower-order space using Krylov subspaces  
generated by the Arnoldi algorithm [1]. The dynamic 
characteristics of the final reduced system are almost 
identical with those of the full system by matching the 
moments of the reduced system with those of the full 
system up to the required nth order. It is remarkably 
efficient in terms of computation time and does not 
require a global system. Numerical examples 
demonstrate that the proposed method saves 
computational costs effectively, and provides a reduced 
system framework that predicts the accurate responses 
of a global system. 

2. Reduction of Model Based on MOR 
 

The Krylov subspace method, which is based on the 
moment matching technique has been recognized as one 
of the desirable ways of a model order reduction 
(MOR) [2,3].  

The state-space model can be simplified by 
appropriately defining the stiffness K  and mass M  
matrices of a global system.  

  {K- M} ={0},                       (1) 

where,   and    are the eigenvalue and corresponding 
eigenvector, respectively. 

The general process of a model order reduction is to 
find an approximated state variable (z) with a small 
number of degrees of freedom by obtaining the 
transformation matrix, T, which satisfies the following 
relation: 

N N n NTz, where R , T R , z R       (2) 

Then obtain the following reduced-order system: 

r r{K - M }z={0}, q=Tz               (3) 

where T
rK =T KT  and T

rM =T MT . 

The stability and accuracy of model order reduction 
depend on how well the transformation matrix is 

obtained while preserving the essential properties of the 
original system. 

The reduction is obtained using Krylove subspaces 
generated by the Arnoldi algorithm [1]. The nth 
Krylove subspace is defined as 
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It has already been provn that if the Krylov subspace 
consists of all linear combinations of the column 
vectors of the transformation matrix, T, the moments of 
the reduced system are coincident with those of the 
original system up to the nth order [4].  

3. Response Spectrum Analysis 
 

A response spectrum analysis has been performed to 
evaluate the structural responses under seismic events.  

A discrete dynamic system is governed by the 
following equation 

MX + KX = F,                          (5) 

where, F is the base excitation function. X is 
represented into q in the general mode coordinate.  

Let   be the eigenvector matrix. After taking the 

eigenvector matrix into both sides of equation (5), it is 
divided by the generalized mass. Due to the 
orthogonality to the stiffness and mass matrix, equation 
(6) is obtained as follows:  

gq + X = - u ,                           (6) 

where,   is the modal participation factor.  
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where, u  is the influence vector, which represents the 
displacements of the masses resulting from the static 
application of a unit ground displacement.  
Mode coefficient vector, iD , which determines the 

scale of structural response is obtained as follows: 
 i i iD S ,                                 (8) 

where, S  is the structural maximum response computed 
from the base excitation.   
Finally, the response of structure iU  is represented as 

follows:  

i i iU = D                                 (9) 

 
The square root of the sum of the squares (SRSS) 



Transactions of the Korean Nuclear Society Autumn Meeting 
Gyeongju, Korea, October  25-26, 2012 

 
method is used to combine the total response in each 
mode.  

3. Numerical Result 
 

To validate the efficiency and accuracy of the finite 
element formulation based on the proposed framework, 
the calculated results are compared with those obtained 
from ANSYS software. The numerical model is shown 
in Figure 1. The elements used in the analysis model are 
the solid element. The total number of elements is 7099, 
and the total number of nodes is 2386. The total weight 
of the numeric model is about 280 kg. A total 30 modes 
are considered for the modal response combination to 
take into account a modal effective mass of 90% of the 
model. The translational 3 degrees of freedom of nodes 
near the pipe lines of the coolant are constrained. The 
material properties are given in Table 1.  
Table 2 shows the natural frequencies and response. It 

can be observed that the first natural frequency and 
response are 6.04 Hz and 14.3 mm, respectively. The 
computed results agree very well with those of ANSYS 
software, and the degrees of freedom are dramatically 
decreased. It is confirmed that the proposed numerical 
approach is almost the same as the results for the full 
model without reduction.  
The response spectrum curve is assumed to be a 

constant type with a spectral displacement of 8 mm in 
the x-direction axis at the boundary condition of the 
numerical model. Figure 2 shows the results of the 
response spectrum analysis using ANSYS software.  
 

Table 1: Material Property of a Reactor 

Component Reactor 

Modulus of Elasticity 183,450 (N/mm2) 

Mass Density 7.83e-9 (N sec2/mm4) 

Poisson’s Ratio 0.3 
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Fig. 1. Finite element model of a reactor 

Table 2: Natural Frequencies and Responses 

 
FEM 

(proposed) 
FEM 

 (ANSYS) 
First Natural Freq. 6.04 Hz 6.04 Hz 

Second Natural Freq. 19.97 Hz 19.97 Hz 

Displacement 
Response  

14.34 mm 14.35 mm 

DOF 30 7158 
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Fig.  2. Response of reactor by ANSYS 

4. Conclusion 
 
In this study, a finite element method based on the 

model order reduction has been developed for a 
response spectrum analysis. Its performance and 
accuracy are verified by the solution of the reactor 
model example. The computed results by the proposed 
method are compared to those of ANSYS software. The 
computational time and memory usage without any 
significant loss of solution accuracy are reduced using 
the Krylov-based model order reduction method (MOR). 
In addition, the numerical result shows the applicability 
to practical problems with complex geometries and 
boundary conditions.  
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