The Effects of Low-pass Filters of Peak Ground Acceleration

Park, Dong-Hee^{*}, Chang, Chun-Joong

KHNP Central Resrach Institute, 1312, Yuseongdaero, Yuseong-gu, Daejeon, Korea, 305-343 *Corresponding author email: dpark@kjnp.co.kr

1. Introduction

This paper studies actual records of earthquake waveforms to analyze attenuation characteristics of peak ground Acceleration(PGA) resulting from low-pass filters. For this purpose, we acquired raw data of major earthquakes around the world including the Western U.S., Taiwan, Italy, Iran, and Turkey etc., and analyzed peak ground acceleration(PGA) values before and after passing through low-pass filters. In addition, we presented results of analyzing case studies, such as the automatic shutdown of a nuclear power plant in the Niigata Prefecture, Japan on July 16, 2007 when an earthquake (magnitude 6.8) shook the plant beyond its design basis, and the earthquake (magnitude 9.0) that occurred off the Pacific coast of Tohoku on March 11, 2011.

2. Methods and Results

As the raw data of each analysis, we obtained accelerated waveforms of the world's major earthquakes from the Pacific Earthquake Engineering Research Center (PEER, http://peer.berkeley.edu/smcat) and that of the 2007 and 2011 earthquakes in Japan from K-NET (http://www.kyoshin.bosai.go.jp/kyoshin/quick), which is operated by the National Research Institute for Earth Science and Disaster Prevention (NIED).

The low-pass filter applied in this analysis was the 5 pole Butterworth filter (Fig. 1). This filter begins attenuation at 10 Hz, and there is an attenuation of -3 dB at 14 Hz (approximately 71% of the input signal voltage is passed). This filter provides differential attenuation in high frequencies.

Fig. 1. The characteristics of Butterworth 5-pole filter which was applied in this study.

The general mechanism behind earthquakes is such that the stronger the earthquake, the wider the area of the seismic source. As such, the main energy frequency of large earthquakes are shifted to a low-frequency spectrum. This is supported by Allen and Shearer (2009)[1], who showed that earthquakes with a magnitude of 5.0 or higher have a corner frequency (fc) less than 10 Hz (Fig. 2).

Fig. 2. Corner frequency versus seismic moment and moment magnitude(Allen and Shearer, 2009

The horizontal and vertical components of peak ground acceleration of each earthquake before and after passing through low-pass filters are analyzed (Fig 3, Table 1).

Fig. 3. An example of peak ground acceleration value before(blue color) and after(red color) passing through low-pass filters. (a) waveforms and (b) fourier spectra

Fig. 3 shows the waveform and Fourier spectrum of each earthquake. In Fig. 3, the unfiltered waveforms and spectrums are colored in blue, while the filtered results are shown in red. To make it easier to discern the effect of low-pass filters on PGA, we have written the values before filtering in the top area, and that after filtering in the bottom. For the component with the largest PGA value of three-component acceleration waveforms, we evaluated the effect of filters on PGA (degree of attenuation) by dividing the original PGA (A) over the PGA after filtering (B) to get the ratio A/B. In this process, some sections below the standard low-pass frequency of 10 Hz take on a value smaller than 1 due to the design characteristic of the Butterworth filter (Table 1). Thus, PGA values can be amplified (by up to 1.7%) when a filter is applied. For cases when the value of A/B exceeded 100%, we rounded down such values to 100%.

Table 1. The result of peak ground acceleration value before and after passing through low-pass filters.

Earthquake	Station ID	PGA(g)		
		Before Filtering (A)	After Filtering (B)	ratio (A/B)
	NIG016	0.3654	0.3351	92
Niigata	NIG018	0.6803	0.6838	100
Truezu	NIG017	0.2476	0.2448	99
lanan	NIG014	0.1107	0.1104	100
(07/07/16)	NIG019	0.4635	0.4655	100
(07,07,20)	NIG013	0.1421	0.1402	99
Kashiwazaki	NIG024	0.2171	0.2201	100
Kariwa	NIG025	0.2281	0.2278	100
NPP	NIG022	0.1549	0.1550	100
accident	NIG012	0.1432	0.1405	98
(Mw=6.8)	NGN001	0.1659	0.1654	100
	NGN002	0.2315	0.2315	100
	MYG002	0.6714	0.6388	95
	MYG001	0.4336	0.4395	100
Great	MYG010	0.4671	0.4835	100
lohuku,	IWT008	0 3299	0.3152	96
Japan	IWT012	0.5255	0.0102	100
(11/03/11)	MYG006	0.5825	0.5733	98
Fukuchima	MVG015	0.3025	0.3735	100
Daiichi	MYG009	0.5585	0.5383	96
NPP	MYG017	0.3560	0.3303	08
Accident	IW/T011	0.3386	0.3492	100
(Mw=9.0)	IW/T011	0.3400	0.2326	97
	IWT016	0.2400	0.2320	97
	MVG014	0.2407	0.2331	08
		0.5050	0.4925	90
	020	0.3301	0.3100	
	025	0.2773	0.2733	100
	034	0.2017	0.2076	
	034	0.3097	0.3070	100
Chi-Chi,	047	0.2700	0.2770	100
(Taiwan)	ALS	0.1000	0.1031	100
	006	0.1020	0.1027	100
(99/09/20,	015	0.5044	0.5574	100
(Mw=7.6)	013	0.1373	0.1373	100
	004	0.0999	0.0905	90
	010	0.2203	0.2139	95
	014	0.2027	0.2025	100
	1050	0.1051	0.1031	100
_	1050	0.1100	0.1014	92
Duzce		0.14/4	0.1402	100
(Turkey)	521	0.3555	0.3309	100
Earthquake	53L	0.1593	0.1574	99
(99/11/12)	1061	0.1142	0.1125	99
$(N_{M_{H}} - 7.1)$	1061	0.1066	0.1037	9/
(1110-7.1)	1000	0.0532	0.0544	100
1	BOL	0.8224	0.8264	100

Kobe (Japan) Earthquake (95/01/17)	NIS	0.5093	0.5068	100
	TAK	0.6155	0.5945	97
	KJM	0.8213	0.8152	99
	KAK	0.3447	0.3334	97
	TAZ	0.6935	0.6912	100
(10100-0.9)	SHI	0.2432	0.2430	100
Izmit (Turkey) Earthquake (99/08/17) (Mw=7.4)	SKR	0.3764	0.3565	95
	IZT	0.2195	0.2117	96
	YPT	0.3489	0.3482	100
	GBZ	0.2440	0.2372	97
	DZC	0.3578	0.3580	100
	ATK	0.1637	0.1640	100
	CNA	0.1788	0.1788	100
	ATS	0.2486	0.2491	100
	JOS	0.2840	0.2853	100
	FHS	0.1355	0.1365	100
Landers	NPF	0.1392	0.1401	100
(U.S) (92/06/28) (Mw=7.4)	DSP	0.1708	0.1684	99
	YER	0.2448	0.2429	99
	WWT	0.1289	0.1169	91
	TPP	0.1062	0.1061	100
	BRS	0.1352	0.1330	98
Parkfield (U.S) (04/09/28) (Mw=6.1)	MIDDLE	0.4251	0.4165	98
	FROEL	0.4704	0.4242	90
	EADES	0.3795	0.3694	97
	VINEY	0.2774	0.2656	96
	HOG	0.2593	0.2568	99
	DONNA	0.3736	0.3737	100
	WORK	0.3345	0.3302	99
	JACK	0.1745	0.1726	99
Northridge (U.S) (94/01/17 (Mw=6.7))	JEN	0.6170	0.6199	100
	PAR	0.5538	0.5295	96
	LOS	0.4716	0.4858	100
	GLE	0.1570	0.1553	99
	MUL	0.4904	0.4989	100
	BVA	0.2138	0.2094	98
	CCN	0.2556	0.2551	100
	CMR	0.1247	0.1240	99

3. Conclusions

As shown above, from analyzing the effects of lowpass filters of PGA for data from major earthquakes, we found that most PGA values after filtering were at least 90% of the original PGA values. Since low-pass filters affect PGA values by less than 10%.

REFERENCES

[1] B.P. Allmann and Peter M, Shearer, 2009, Global Variation of Stress Drop for Moderate to Large Earthquakes, Journal of Geophysical Research, Vol. 114, B01310, 2009

ACKNOWLEDMENT

This work was supported by the Radioactive Waste Management of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2012171020001C)