Safety Functions and Objective Provision Tree Application to Sodium-Cooled Fast Reactor

Huichang Yang^{a*}, Namduk Suh^b

^aTÜV Rheinland Korea Ltd., Goro-dong 197-28, Guro-go, Seoul 152-719 ^bKorea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 ^{*}Corresponding author: huichang.yang@kor.tuv.com

1. Introduction

The Objective Provision Tree (OPT) is a methodology to ensure and document the provision of essential "lines of protection" for successful prevention, control or mitigation of phenomena that could potentially damage the nuclear system[1]. The OPT methodology has been developed mainly by International Atomic Energy Agency (IAEA) and the application of OPT methods to development of new reactors such as GEN-IV was strongly recommended by GEN-IV International Forum (GIF) Risk and Safety Working Group (RSWG). Examples of OPT applications during new reactor design can be found in reference [2] and [3].

We are developing draft OPT for KALIMER, sodium-cooled fast reactor(SFR) developed by Korea Atomic Energy Research Institute (KAERI). The OPT is normally developed by designer to confirm the safety function design but we will use the developed OPT in developing the specific safety requirement. This paper presents our preliminary results and concepts about this topic.

2. OPT Application to Sodium-cooled Fast Reactor

The OPT method is a top-down approach which starts from the level of Defense-in-Depth (DiD), objectives and barriers, safety functions, challenges, mechanisms and finally ends with provisions. OPT application should start with the application of DiD concept to KALIMER.

2.1 Defense-in-Depth Concept for KALIMER

In reference [4], levels of DiD was specified as in table 1. These definition of DiD levels can be applied to all nuclear facilities including SFRs. Levels of DiD defined in table 1 was applied to the OPT development in this study.

2.2 Safety Functions for KALIMER

In reference [5], safety functions in general form were specified as following;

- control of the reactivity
- removal of heat from the core, and

confinement of radioactive materials and control of operational discharges, as well as limitation of accidental releases.

Table 1. Levels of Defense In Depth					
Levels of DiD	Objective	Essential Means			
Level 1	Prevention of abnormal operation and failures	Conservative design and high quality in construction and operation			
Level 2	Control of abnormal operation and detection of failures	Control, limiting and protection systems and other surveillance features			
Level 3	Control of accidents within the design basis	Engineered safety features and accident procedures			
Level 4	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents	Complementary measures and accident management			
Level 5	Mitigation of radiological consequences of significant releases of radioactive materials	Off-site emergency response			

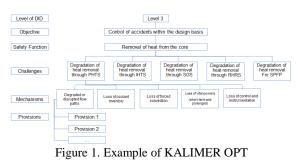
Based on the fundamental safety functions suggested in reference [5], safety functions for KALIMER were defined as in table 2.

Table 2.	KALIN	4ER S	afetv	Functions	for	OPT
----------	-------	-------	-------	-----------	-----	-----

Table 2. KALIWILK Safety I diletions for Of T						
Fundamental Safety	KALIMER Safety	Remarks				
Functions	Functions					
Control of reactivity	Reactivity control	Reactivity control function				
		by control rods and other				
		shutdown features				
Removal of heat from the	PHTS heat removal	Heat removal functions				
core	IHTS heat removal	from PHTS, IHTS, SGS,				
	SGS heat removal	RHRS and SPFP				
	RHRS heat removal	respectively				
	SPFP heat removal					
Confinement of	Containment integrity	Functions to maintain				
radioactive materials,		containment integrity				
control of operational		including;				
discharges, as well as		- Pressure/temperature				
limitation of accident		control				
releases		 Combustible gas control 				
		 Sodium fire and explosion 				
		protection				
		 Radioactive material 				
		release control				
		 Spent fuel building 				
		integrity(if applicable)				

PHTS : Primary Heat Transport System

IHTS : Intermediate Heat Transport System SGS : Steam Generation System


RHRS : Residual Heat Removal Systems

The safety function, heat removal from core for KALIMER consisted of five design-specific sub-safety functions, which can be matched to challenges directly, based on the system boundary definitions. This approach for the definition of core heat removal function has several benefits as following;

- clear logic development for challenges, mechanisms to degrade, and provisions,
- benefits in verification of OPT integrity and coverage of safety requirements, and
- reflection of design specificity

In examples of reference [2] and [3], different approaches in defining challenge to safety functions were applied. In other words, a challenge to a safety function was defined. The benefit of approaches in reference [2] and [3] is that they can ensure the comprehensiveness of OPT by adopting the highly deductive approach. However, there might be potential complexity of OPT logic when the complex design features are considered.

Schematic OPT of level 3 DiD and removal of heat from the core was illustrated in figure 1.

2.3 Consideration of Fukushima Lessons

Lessons-learned from Fukushima accident can be summarized as following;

- (1) flooding/seismic re-evaluation, and
- (2) mitigating capability enhancement for;
 - prolonged station blackout
 - loss of ultimate heat sink including spent fuel pool
 - combustible gas control capability in containment and spent fuel pool building, and
 - organizational emergency response including communication and training.

In defining challenges and mechanisms, the appropriate logic boxes to reflect Fukushima lessons will be included OPT.

2.4 Milestones for KALIMER OPT Development

The OPTs for level 3 DiD, removal of heat from the core is under development as a first reference for verification and these will be developed by the end of this year. All OPTs and the evaluation results using OPT will be developed within 2013.

3. Conclusions

In general, the OPT is developed by designers based on the phenomenology. We are developing OPT based on system boundary and the developed OPT will be applied in checking whether the specific regulatory requirements embodies all the safety functions and no requirements are missed. This is the first-of-a-kind application of OPT. The results will contribute to the completeness of the regulatory requirement under development by KINS.

REFERENCES

[1] GEN-IV International Forum, Risk and Safety Working Group (RSWG), "An Integrated Safety Assessment Methodology (ISAM) for Generation IV Nuclear System, Ver. 1.1, p.15, 2011.

[2] International Atomic Energy Agency, "Considerations in the Development of Safety Requirements for Innovative Reactors: Application to Modular High Temperature Gas Cooled Reactors," IAEA-TECDOC-1366, pp.35-46, 2003.

[3] G. L. Fiorini and T. Leahy, "Safety Approach of Gen-IV Systems: Application to SFR," presentation slides, IAEA Workshop on Safety Aspects of Sodium Cooled Fast Reactors, p.14, Vienna, 2010.

[4] International Nuclear Safety Advisory Group, "Defence in Depth in Nuclear Safety," INSAG-10, p.6, 1996.

[5] International Atomic Energy Agency, "Safety of Nuclear Power Plants: Design," NS-R-1, p.11, 2000.