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1. Introduction 

 
The power peaking factor representing a ratio of the 

maximum to average power densities in the core is one 
of the key parameters that determine the power rating of 
a nuclear power plant (NPP).  Conventional methods 
for generating the power map involve the use of the 
calculated power distribution to interpolate incore 
detector reaction rates in instrumented assemblies with 
nominal power-to-signal ratios [1]. Measurement 
uncertainties and parametric variations in the calculated 
power distribution are then represented via the 
uncertainty hot channel factor   and the engineering 
hot channel factor   to arrive at the overall hot 
channel factor 	[2,3] .  We developed a Kalman 
filtering minimum-variance estimation (MVE) 
technique [4,5] that represents uncertainties in measured 
detector signals and predicted power distribution 
directly to determine an optimal power distribution. 
This paper presents the application of the MVE method 
to determine an optimal 2-D power distribution in a 
PWR core. 

 
2. Kalman filtering MVE model 

 
For 157 fuel assemblies in the core, a 314-

dimensional state vector  is set up to represent the two-
group flux distributions in the core. The posterior state 
vector  , after measurements, is obtained from the 
prior distribution  accounting for random fluctuations 
  =  + ,  (1) 

 

where   is generated from a 3-D nodal diffusion 
theory calculation with the ANC code [6] and  is a 
white Gaussian distribution with covariance Q.  The 3-
D incore detector signals are averaged along the length 
of the fuel assemblies to obtain 2-D reaction rates in the 
157-dimensional measurement vector z representing the 
normalized assembly power distribution obtained with 
the INCORE code [1]: 
  =  + , (2) 
 

where   is the measurement transformation matrix 
connecting   to   and   is a white Gaussian 
distribution with covariance R. 
   Once incore measurements are obtained, the posterior 
flux distribution is obtained to optimally correct for the 
difference between the measurement   and prediction  
 

 =  + ( − )	, (3) 
 

in terms of the Kalman gain matrix  
  = ( + ). (4) 
 

The updated posterior estimate of the covariance for the 
state vector 	is determined: 
  = ( − ) = {( − )( − )}, (5) 

 
where the prior covariance   is set to Q of Eq. (1). 
Finally, given the optimal estimate  for the neutron 
flux distribution, we may readily calculate the 
corresponding optimal estimate for the power 
distribution by   and determine the 2-D power 
peaking factor   as the upper bound estimate for the 
normalized power in the peak power assembly. 
 
3. Numerical results and comparison with 
conventional power mapping approach 
 
3.1 Estimates for initial covariance matrices 
 

The first step of MVE generates the optimal power 
map using typical uncertainty value  =1.05 and  =1.03 with an upper confidence level of 99.9% 
corresponding to 3σ values for 3-D power map. For our 
2-D power map study, we thus obtain  = 0.7% and  = 1.1%  as initial estimates for uncertainties in the 
system state   and measurement vector  . For upper 
bound estimates, however, we have used 3σ values to 
compare directly with the  = 1.05  and  = 1.03 
for 3-D or  = 1.033 and  = 1.020 for 2-D power 
maps. 

 
3.2 Test calculation with actual incore measurement 
 

We performed our test calculations for a PWR core at 
a hot full power condition with all rods out with a 
power output of 2775 MWt at the burnup step 6544.5 
MWD/MTU. Moveable miniature fission chambers are 
used to obtain reaction rates in 49 assemblies out of a 
total of 157 assemblies in the core. The optimal power 
map generated via the MVE technique is shown in 
Figure 1 together with the ANC prediction power and 
measured maps obtained through the INCORE code. 
The optimal power distribution lies mostly close to the 
ANC power map because   <  , i.e., calculational  
errors are assumed less than measurement errors in 
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determining the Kalman gain matrix  of Eq. (4). In the 
opposite case, the optimal power distribution would 
approach the measured power distribution. 

 

 

Figure 1. Comparison of 2-D power distributions with  3 = 2.0% and 	3 = 3.3% 

3.3 Upper bound peaking factor 
 
In the quarter-core power maps compared in Figure 1, 

we also include upper bound estimate for the MVE 
power distribution with 3σ estimates of uncertainties. 
We also show results of parametric studies with varying 
values of the uncertainties in Table 1. 

 
Table 1: The upper bound power corresponding to 99.9% 

confidence level 
 3 

         (%) 1.0 2.0 3.0 4.0 3= 1.5∗% 
Fxy(INCORE) 1.373  1.386  1.400  1.413  

Fxy (MVE) 1.340  1.350  1.354  1.356  
% difference 2.4  2.6  3.3  4.0  3= 3.3% 

Fxy(INCORE) 1.397  1.411  1.425  1.439  
Fxy (MVE) 1.339  1.352  1.361  1.367  

% difference 4.2  4.2  4.5  5.0  
* including only signal fluctuations for a calibration thimble without 
any other uncertainty like tabulated cross-sectional data might be the 
lowest limit.. 

 
Note that for conventional INCORE approach, the 2-

D peaking factor (INCORE)  simply adds   =1.033 and  = 1.020 to the peak assembly measured 
power of 1.339, while (MVE)  includes the 

3σ	equal	to	1.9%  of  of Eq. (5). Peak power 
assembly in Figure 1 and the parametric results in Table 
1 both show that (MVE) is less than (INCORE) 
and less sensitive to  and . This rather significant 
result originates from the optimal state estimates 
provided by the Kalman filter technique, in particular, 
the posterior covariance matrix of Eq. (5). Substituting 
the Kalman gain matrix  of Eq. (4) into Eq. (5), we 
note that the posterior covariance  should be smaller 
than the prior or initial covariance . 

  
4. Conclusions 

 
Although this study shows the possibilities of 

reducing the uncertainty and obtaining realistic power 
maps through the Kalman filter algorithm developed, 
further studies would be necessary to extend the 
algorithm to 3-D power map generations. Additional 
studies would be required to obtain accurate estimate of 
errors associated with both flux measurements and 
predictions. This research ultimately aims at 
representing the evolution of 3-D flux and power 
distributions over fuel cycles through optimal 
estimation techniques to obtain more accurate fuel 
burnup distributions. For this purpose, unscented 
Kalman filter algorithms [5] should be developed to 
represent the nonlinear variations of flux distributions 
as a function of fuel burnup accurately and conveniently. 
Furthermore, H-infinite filters may be better suited for 
representing upper bounds since the power mapping 
algorithm should accommodate conceivable 
disturbances more systematically [5].  
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