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1. Introduction 
 

In the field of nuclear safety analysis, the thermal-
hydraulic behavior is simulated by solving the time-
space averaged balance equations for two-phase flow. 
Most thermal-hydraulic codes have the similar structure 
of the balance equations. However, since the equations 
are formulated based on continua, a question arises that 
they can be valid even for the spatially-dispersed phase. 
In this paper, we discuss the inherent problem of the 
existing momentum equation, and propose a modified 
momentum equation. 

 
2. Existing momentum equation 

 
The averaged equations can be obtained by the time-, 

area-, and/or volume averaging treatment. In spite of 
the various averaging procedures, the basic forms are 
similar one another. For a reference, the time-volume 
averaged momentum equation used in RELAP5 code 
[1] is given below. 
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The terms on the right-hand sides of Eqs. 1 and 2 are, 
respectively, the pressure gradient, gravity, wall drag, 
momentum transfer owing to phase change, interface 
drag, and virtual mass force. 

Let us consider a bubbly flow under a simplified 
circumstance (horizontal, steady, fully-developed, no 
phase change), then we have  
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If we neglect the wall drag on bubbles, Eq. (3) becomes 

          (5)
 

 
TRACE, COBRA-TF, and CHATHARE codes do not 
impose wall drag on dispersed phases (drop and 
bubble). The RELAP5 code [1] does not calculate a 
portion of the wall drag on droplets, but consider the 
wall drag on bubble. Most thermal-hydraulic codes 
contain the pressure gradient term.  Equation 5 implies 
that the bubble velocity must be higher than the liquid 

velocity if a favorable pressure is applied. However, the 
dispersed phase is forced to move by the surrounding 
phase, the dispersed phase velocity must not exceed the 
carrier phase velocity in the simplified circumstance. 
According to the experimental works [2,3], the mean 
bubble velocity was measured to be slightly lower than 
the mean water velocity in horizontal bubbly flows, 
which might be attributed to the interaction between 
optical/electrical probes and bubbles.  It is certain that 
the bubble velocity must not exceed the water velocity. 

Recall that averaged momentum equation contains 
the pressure gradient term owing to the assumption of 
continua. If we could remove the pressure gradient term 
in Eq. (5), the velocities of two phases would be equal.  
In the next section, we will discuss the pressure 
gradient term and propose new momentum equations 
appropriate for disperse flows. 

 
3. Proposed momentum equation 

 
We have applied the volume-averaging to the local 

instantaneous momentum equation. As a result, we find 
out that the pressure gradient is devoted not to move the 
dispersed gas but to move the continuous liquid 
exclusively.  In other words, the pressure gradient term 
appear only in the continuous phase momentum 
equation. Detailed derivation will be presented at the 
conference. As a matter of fact, a bubble is forced to 
move by both the asymmetric pressure distribution 
(form drag) and the shear stress force (shear drag). 
However, it is more proper to express the form drag in 
terms of the relative velocity rather than the global 
pressure gradient. Therefore, it is reasonable to remove 
the pressure gradient term in determining the bubble 
velocity, since the pressure difference between 
posterior and anterior is caused by the relative velocity 
rather than the global pressure gradient. However, in a 
vertical flow, the pressure gradient force should be 
expressed by the buoyancy force. Otherwise, the rising 
bubble velocity becomes slower than the surrounding 
liquid velocity. 

Similarly, for a dispersed liquid flow, the pressure 
gradient term can be neglected in the momentum 
equation. Droplet flow could be categorized into a kind 
of particulate flow (dusty gas flow). There are several 
approaches to predict the particle movement in dusty 
gas flow. Of them, the point-particle approach assumes 
that the particles are sufficiently small that they 
perfectly follow the local carrier phase [4]. In the point-
particle approach, the motion of particles is not 
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described by the local pressure gradient. In other words, 
the pressure affects only the motion of the carrier phase. 
Of course, bubbles cannot be treated like point-particles, 
but droplets could be. As stated previously, neglecting 
the pressure gradient term in the dispersed phase is 
practicable when the control volume size is relatively 
larger than the bubble/droplet size. In this regard, 
neglecting the pressure gradient term in the dispersed 
phase is in harmony with the point-particle approach for 
a particulate flow. 

Consequently, when the buoyancy force is negligible, 
we propose 
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for a horizontal bubbly flow, and 

gfggg

ggIg
g

ggg
g

gg

VM)(FIG

)(ΓFW

















vvρα

vv
x

p

x

v
vρα

t

v
ρα           (8) 

fgfffffIg

f
fff

f
ff

VM)(FIF)(Γ 







vvραvv
x

v
vρα

t

v
ρα           (9) 

for a dispersed droplet flow. For a vertical bubbly flow, 
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Equations 8 and 9 can be used for a vertical dispersed 
liquid flow, since the buoyancy effect is negligible. 
 

4. Test and result 
 
SPACE code was modified according to the 

proposed equation. We simulated an annular flow in a 
pipe with D=0.1 m and L=20 m. The pressure 
difference 0.2 bar was applied between the inlet and the 
outlet. At the inlet, while the void fraction was set to 
0.9, the drop fraction was adjusted between 0.01 to 0.05. 
To exclude any other effect, entrainment, deposition 
and phase change were disabled. The wall drag was not 
imposed on droplet. Figure 1 and 2 show the simulation 
results for the existing equation and for the proposed 
equation, respectively. It is observed in Fig. 1 that the 
droplet velocity is higher than the gas velocity for all 
cases. However, we can see that the droplet velocity 
equals the gas velocity in Fig. 2. 
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Fig.1 Test result of the existing momentum equation 

0 50 100 150 200 250
0

1

6

7

8

 

 

V
el

oc
ity

 (
m

/s
)

Time (s)

 v
drop

 v
gas

 v
liq

 
Fig.2 Test result of the proposed momentum equation 

 
5. Conclusion 

 
A new momentum equation has been proposed 

appropriated for dispersed flows. 
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