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Abstract

A method is described to develop an H,, filtering method for the dynamic compensation of se

neutron detectors normally used for fixed incore instruments. An H,, norm of the filter transfer matri
as the optimization criteria in the worst-case estimation error sense. Filter modeling is perform
discrete-time model. The filter gains are optimized in the sense of noise attenuation level of H,, s

introducing Bounded Real Lemma, the conventional algebraic Riccati inequalities are converted into
Matrix Inequalities (LMls). Finally, the filter design problem is solved via the convex optimization fra
using LMIs. The simulation results show that remarkable improvements are achieved in view of t

response time and the filter design efficiency.

1. Introduction

Digital compensation of the self-powered neutron detectors (SPNDs) has been particularly emph
to its importance in reactor surveillance and operation monitoring. Previously, several filtering meth
proposed for the compensation of delayed signals from Rhodium fixed incore detectors extensively
Asea Brown Boveri-Combustion Engineering (ABB-CE) PWRs.[1,2,3,4] Korean Standard Nuclear Power
also adopted the same type of detectors for core monitoring purpose. Today, there is a growing need
the slow response of the detectors for the enhancement of the power maneuvering capability and the
of uncertainties in thermal margin estimation. Recently, an open-loop observer type estimation metho
proposed in [3] and standard Kalman filter was applied in this field.[4] Although Kalman filter me
considerably improved the slow response of the Rhodium detectors, there still remain some difficulties
design such as the requirement of the knowledge of noise covariance and the limited performance c

relax these limitations, we introduced an LMI-based H,, filtering method.[5,6,7] Section II presents the



framework of the LMlI-based linear filtering theory on the H,, setting. Section III describes the

application results of the method for dynamic compensation of the delayed signal from Rhodium incore
detectors.

II. LMI-Based H . Filtering Theory

The state-space model based filtering methods has been widely applied in the fields of sig
estimation and fault diagnostics, etc. The most well known estimator is the Kalman filter which h
applications in wide variety of industries including the compensation of delayed signal from Rhodium
incore detectors.[4] Kalman filter is an estimation method which minimizes the average estimation erro
precisely, Kalman filter minimizes the variance of the estimation error. But the Kalman filter assumes
noise properties are known. That means the optimality of the Kalman filter relies on the knowledg

covariance matrices and another tuning process after installation of the filter would be required.

limitations gave rise to H,, filtering, also known as minimax filtering. The H,, filter gives hard uppe
on the estimation errors, no matter what the disturbances are as long as they are of finite energy.

filtering minimizes the worst-case estimation error. Recently, the conventional H,, filtering method
applied to the problem of estimating time-varying reactivity[8,9], which is based on solving the
equation and requires an iteration scheme to find the optimal noise attenuation level. This kind of
approach can fail if the Hamiltonian matrix of the filter has pure imaginary eigenvalues during the

The LMI-based approach can overcome this kind of limitations by solving the convex optimization meth
instead of the closed-form Riccati equation. Due to the dramatic growth in computing power and the

very powerful numerical optimization algorithms, the LMI problem can be solved within a com

computing time required to find a closed-form solution.[11]

II.1 Discrete Time LMI-Based a Priori H., Filtering Problem

Consider the following linear time-invariant discrete-time system given by
Xp+1 :Axk+ B’I/Uk
Vrp = ka—f—Dwk (1)
Zp = LXk.
where x& R” is the state vector, ye R’ is the measurement output vector, we R? is a disturbanc
containing both process and measurement noise and ze= R’ is the signal to be estimated. The
A, B, C,Ind L are real and of appropriate dimensions. We are interested in designing a filter of the
Ter1 =A 2+ K(y,— C xp) @
Zp = L Xp
where K R”"” is the filter constant gain to be determined. Defining the state error as e,= x,— fck
estimation error dynamics is given by
€pt1 = (A_ KC)€k+ (B—KD)wk
g/@ =Zp— 2k=L€/€.

(€))



The key important feature of the H,, filtering problem is to find the estimate 5; of the signal z,

by minimizing the worst-case estimation error energy ||¢||, for all bounded energy disturbance w, that

is,

llell,

el -

“

min||H | = min sup ,e 10, o)

where H ,, is the transfer function from the disturbance w to the estimation error e. Since the in
norm of the signal does not require any knowledge except to be bounded, the H,, filtering problem tu
be a powerful strategy. The y-suboptimal H,, filtering problem is defined to find (if it exists) a filter
|H ,.ll< 7, where the positive scalar 7y is a prescribed noise attenuation level. The construction of an

filter is to find a symmetric positive definite matrix P which can be derived from the following dis
Bounded Real Lemma.[11,12]

Discrete-Time Bounded Real Lemma :

(A — KQ)is asymptotically stable and ||H ,, || <y if and only if there exists a positive definite s

matrix PR ™" satisfying the following linear matrix inequality

A—KC B—KD1TrP 0 P 0

A—KC B—KD
}— < 0. (6))

L 0 0 I L 0 0 I

U
To transform this inequality to a solvable form, define the filter gain as K= P 'W where WeR™"

Eq. (5) becomes
T

lA—P_IWC B—=P'WD| [P 0||A—P'WC B-P'WD| [P 0 ©
- <o0.
L 0 0 7 L 0 0 71
It is straightforward to rewrite Eq.(6) as
PA—WC PB—WD|"[P™' 0|[PA-WC PB—WD| [P 0
[ }_ 0. o
L 0 0 I L 0 [0 /T
By using Schur complement[12], this can be rewritten as
P 0 A'P—C'W' LT
0 #I  B'"P—D'W' 0
< 0. ®
PA—WC PB— WD P 0
L 0 0 1

This is an LMI feasibility problem for discrete-time optimal H,, filter. The y-optimal H,, filter is obt

solving the LMI vy —optimization problem subject to the LMI constraint Eq. (8).

I1.2 Discrete Time LMI-Based a Posteriori H, Filtering Problem



The discrete-time H,, filter, Eq. (2), uses measurements in one step delay, i.e., a priori filter. Cu

sampling time step size of fixed incore detector system is 2 sec which is a rather large time step size.
So we are interested in using the current measurement, the a posteriori filter. [14] Using the filter
form that follows Eq. (2), it can be written as
Xpe1 =A %+ K(y4e1— CA x3)
z, =L x,. )
Then the filter error dynamics becomes
e =(A—KCA)e,+(B—KCB)w,— KDw, . (10)
For this error dynamics equation, it is not easy to construct the proper LMI system due to the (k+ 1)tk
exogenious term KDw,. . To simplify the filter design problem, we assume D=1() Then Egs.(5) and

transformed into
T

A—KCA B—KCB\T[P 0][ A—KCA B—KCB‘ P 0
- <0, (11)
L 0 0 I L 0 0 I
P 0 ATp—Yy™xT LT
0 41  B'p—7'xT
<0 (12)
PA—YX PB—XZ P 0
L 0 0 I

where Y= CA, Z= @Bd the filter gain is given by K= P~ 'X These system of LMIs are convex
and can be easily solved by the following algorithm with LMI Control Toolbox[11].

I1.3 Tradeoffs between Response Time and Noise Gain

In the previous sections, we considered the minimization of 7y only. However, the filter resp
becomes faster and the noise gain increases as 7y decreases and vice versa. That means the reduction
pros and cons. In the design process of SPND's dynamic response, the noise gain should be considered
to prevent any excessive overshoot in filter response induced by random noise. The noise gain is defin
square root of the sum of the squares of filter impulse response as time approaches infinity. In this
applied a simple tradeoffs between response time and noise gain by introducing a weighted sum of two

filter gains attained from separate H,, filter design with different tuning parameter. That is,

K=dK(1—-d) Ky, (13)
where K, = H,, filter gain with slow response and small noise gain
K, = H, filter gain with fast response and large noise gain
a = weighting parameter less than 1.

The weight value @ is a key design parameter in the tradeoff of the filter performance. But it can

determined by checking the closed loop stability, response time and noise gain.

I11. Application of H,, Filtering Scheme to SPNDs



Dynamic response of Rhodium SPNDs is mainly governed by the (#, B)reaction of [-emitting

This gives rise to delay, depending on the /-decay constant, of the signal of measured neutron level
in the reactor core. The dynamic model of Rhodium SPNDs are well known and one can find
published results[1,2,4].

The discrete-time detector dynamic model is given by;

1 0 0 1
Xe+1= l((1_411:)%)(1—e_m”") P 0 Xt | 0 | wy,
b A (14)
e S B 0

vie= [p b plxs,

where x=[¢,x,,x/] T, isp the neutron flux to be estimated and x,,x, are fictitious state variab
definitions of the filter constant and values used in this paper can be found in [4]. In this study, the
are performed to demonstrate the applicability of the discrete-time H,, filter with various desire
attenuation levels. The tuning parameters of the filter are the prompt fraction p and weighting para
which determine the response time and noise gain. The advantage of the H,, filter is that there is
tuning parameter and the noise covariance need not be known.

In this paper, the simulation is performed for 7= 1 and 2 secs. Table 1. shows the filter gain

resulting closed-loop poles of the H,, filter. Table 2. summarizes the filter response time and noise g
H,, filter compared with Kalman filter. The response time is defined as the time taken to reach 9
response and interpolated between sampling interval. The H,, filter response tine can be reduced to 4.

sec with 7= 1 and 2 sec, respectively, compared with 6.9 and 6.5 sec of the Kalman filter. The H.,,
gives improved noise gain. Figures 1 and 2 show the step and ramp responses of the filter, respectiv
the signal from SPND is transferred to core monitoring system which performs extensive calculations
core operational margin, the update time of the SPND signal is currently limited to 2 sec. As the sam
size becomes larger, the effect of the noise gain becomes significant. If the sampling step size could b
the uncertainty of estimating thermal margin in core monitoring can also be decreased. As shown in Fi

2, the H,, filter shows reduction in response time for step response.

Table 1. Filter Gains and Closed-Loop Poles of H,, Filters

H., Filter* H,, Filter*
( TF1 sec) (T2 sec)
5.2662 5.3682
Filter Gain (K) l 0.1445} l 0.7740}
—0.0035 —0.1010
0.5496 0.6107 + 0.10097
Closlfd -Loop 0.8222 0.6107 - 0.1009i
oles
0.9972 0.9944

* a posteriori filter with K,= K(p=10.22), K;,= K(»p=0.1)



Table 2. Performance Comparison of H,, Filters with Kalman Filter

Method Response Time (sec Noise Gain
Discrete-Time H,, Filter
4.8 5.78
( T=1 sec, d=0.87)
Discrete-Time H,., Filter
5.7 5.71
( T=2 sec, d=0.75)
Kalman Filter ( 7=1 sec 6.9 5.88
Kalman Filter ( 7=2 sec 6.5 5.89

* a posteriori filter with K= K(p=0.22), K,= K(p=0.1)

IV. Conclusions and Recommendations

A new method for dynamic compensation of Rhodium self-powered neutron detectors is developed
H filtering scheme. The method is based on the minimization of the worst-case estimation error via

optimization algorithm. The optimization problem is constructed as a linear matrix inequality problem wh
overcome the limitations of the conventional method based on the solution of Riccati equation. The app
of the developed method is demonstrated by simulations. The developed filtering method shows im
performance in spite of the totally unknown noise covariance and gives simple and efficient filter design
It is recommended that the applicability of the filtering method be considered for monitoring and p
system of commercial power reactors. It is recommended that the applicability of the filtering me
considered for monitoring and protection system of commercial power reactors.
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Figure 1. Step Response of H,, filter (Continuous-Time)
( — : Reference, A : Uncompensated,

x : Discrete-Time a posteriori H,, Filter with 7= 1 sec, d = 0.87,
m : Discrete-Time a posteriori H,, Filter with T = 2 sec, d = 0.75,

¢ : Kalman Filter with 7= 1 sec, e : Kalman Filter with 7T = 2 sec)
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Figure 2. Step Response of H,, filter (Discrete-Time)
( — : Reference, A : Uncompensated,

x : Discrete-Time a posteriori H,, Filter with 7= 1 sec, d = 0.87,
m : Discrete-Time a posteriori H,, Filter with T = 2 sec, d = 0.75,

¢ : Kalman Filter with 7= 1 sec, e : Kalman Filter with 7T = 2 sec)
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