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ABSTRACT

A new approach for classification of critical heat flux (CHF) data based on the principal
component analysis (PCA) and the hierarchical clustering method is suggested. The PCA is
used to describe the multivariate structure of CHF data and the characteristics of resulting
CHF structures are identified. The agglomerative hierarchical clustering is performed to see
the proximity of the CHF data with the obtained information. Clusters are represented by a
dendrogram and grouped into three meaningful categories. Katto’'s CHF-regime map is applied
to the resulted CHF group for a better understanding of the physical meaning of the clusters.
The combination between principal component analysis and agglomerative hierarchical
clustering method provides a meaningful grouping of CHF data which can be used for other

applications.
I. Introduction

The critical heat flux (CHF) can be influenced by many independent variables such as the
inlet flow rate, the inlet temperature, the system pressure, the tube internal diameter, the tube
length, and so on. Because the influence of these variables on CHF mechanism is so complex
and obscure, there are lots of attempts to understand the effect of system parameters on
CHF, especially using experimental data or empirical correlation [1,2]. Recently, an advanced
information processing technique such as artificial neural network or entropy minimax
principle used to provide the possibility of valuable alternative for estimating CHF [3,4].

To understand the exact CHF mechanism and parametric trends, one must recognize the
structure of CHF data and its relationship that may exist in each variables. Therefore,
clustering or classification of CHF data based on its internal structure is necessary for
properly estimating CHF phenomena.

In this paper, as a multivariate data analysis tool which provides information for organizing
a large set of data, principal component analysis (PCA) is used to find out the multivariate
structure of CHF data. PCA is a multivariate technique in which a number of related
variables are transformed to set of uncorrelated variables [5,6]. The principal component
method has been widely applied for many areas, especially for quality control, forestry,
environmental science, and so on [7,89]. It can be applied to thermal-hydraulic area such as
CHF data classification.



After obtaining information through the PCA of CHF data, cluster analysis using the
agglomerative hierarchical clustering [10,11,12] which proceeds by a series of successive
fusions of the individuals into groups is performed. To measure the proximity of CHF data,
the Euclidean distance (ED) which is the distance between two points in CHF data set is
computed and used. Clustering is represented by a two-dimensional diagram known as a
dendrogram [10].

For application of the combination of the PCA and agglomerative hierarchical clustering
method to CHF phenomena, vertical round tube CHF data for water has been adopted from
the reference [13]. For convenience, CHF data at 1000 psia pressure are selected for
evaluation of the clustering. After clustering is made, Katto’s CHF-regime map [14] is applied

to the obtained clusters for a better understanding of the physical meaning of the clusters.

II. Principal Component Analysis and Hierarchical Clustering Method

The essential feature of the Principal Component Analysis (PCA) is the transformation of
the original variables xi, X2, .., Xp into a new set of variables yi, y2, .., vk [0]. The new
variables are linear transformations of the original ones with the characteristics that yi, yo, ...,
vk are uncorrelated with each other and they account for decreasing portions of the variance

of the original variables [5]. The coefficients defining the linear transformations from xi, X2,

., Xp tO V1, V2, ..., Vk, are found from the eigenvectors of the correlation matrix of the original
variables.
In the paper, data matrix (X) consists of the number of CHF data as p=1,2, .. 134

variables (columns) and non-dimensional parameters as k=1,2,3,4 objects (rows). The objects
are converted from the independent variables into 4 non-dimensional parameters

ooy | AH i q. . . . ce
( G2l d Hy, o GH, ) [14] to make the highly correlated relationship within the

correlation matrix. With the modified object data matrix, the correlation matrix is calculated
and principal component scores(yi, y2, ys, va) are determined for each data point considering

the eigenvalues and associated eigenvectors. The principal component equation is as follows :

y= WD x — x) (1)

where, vy is principal component score,
W' is transpose of eigenvector

D is diagonal matrix of standard deviation.

Table 1 shows the result of PCA operation with the data matrix. For visual inspection of the
structure of CHF data, principal component scores can be plotted as in Figure 1.

As a result of PCA operation, 4 principal component score matrices are produced. To
classify the uncorrelated variables of CHF data within the matrices, an agglomerative
hierarchical clustering method which produces a series of partitions of the data is introduced.
The starting point is to find the nearest pair of distinct clusters as a function of distance or

similarity. For constructing distance measure, Euclidean distance is used. The Euclidean



distance (ED) is

dj = ¢ Z‘.l gl(x,» — x;)%. 2

In this case, data consist of p(=134) x n(=4) matrix and dij means the distance between ith
group and jth group. After computing all the distances in data matrix, the distance matrix
can be constructed. The next step is to select the entry with the smallest distance and form
a two-member cluster. And then, another closest distance is searched. This procedure
continues until the proper stage is produced. The corresponding dendrogram is shown in
Figure 2. The dendrogram indicating those three clusters is shown in Figure 2. The

agglomerative hierarchical clustering algorithm is programmed for evaluation of the analysis.
III. Results and Discussion

Table 1 shows the result of PCA operation. In Table 1, the eigenvalues and eigenvectors

corresponding to 4 non-dimensional parameter’'s correlation matrix are presented. Table 1
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two components account for 90% of the variance in the non-dimensional parameters. From

are highly correlated each other among the variables. The first

the visual inspection of the 4 principal component scores in Figure 1, some interesting aspects
are inferred from involving the component number. For principal component score yl, there is
some strong relationship with the mass velocity(G). As the yl is increased, mass velocity is
decreased as shown in yl-y3 plot of Figure 1. It is judged that the non-dimensional

parameter G%L; has an dominant effect on component score yl. For y2, some tendency can
fg

be extracted from yl-y2 plot of Figure 1. The inlet subcooling(ATin) is increased as y2

i

increases, which means that y2 is closely related with non-dimensional parameter

H fg .
. . 1% . .
Non-dimensional parameters Gg’; and El, have an influence on y3 as shown in y2-y3 plot
of Figure 1. And the last component y4 seems to have a major dependency on th; as
fg

shown in y3-y4 plot of Figure 1. Based on the above inspection of the plot, the structure of
CHF data can be recognized in some degree. Table 2 summarizes the characteristics of CHF
data which is used in this analysis

With 4 component scores obtained, the simplest agglomerative hierarchical single linkage
clustering is performed. As a consequence of analysis, the smallest distance is 0.00079 and it
turns out that two CHF points have a similar characteristics. The dendrogram of Figure 2
shows the data into three main clusters according to the distance. The first cluster (Cl1)

consists of 13 CHF points and characterize by very low mass velocity comparing with other

data. The second cluster (C2) contains 8 CHF data and its ?lz’ is lower than that of the

other data. The third cluster (C3) is made of 4 different test sections and can be divided into



sub-clusters.

For a better understanding of the physical meaning of the clusters, Katto’'s CHF-regime
map is applied to the obtained clusters. Katto [14] made the 4 characteristic CHF regimes
which can be classified as L, N, H and HP-regimes and also defined CHF mechanism
followed by CHF regimes. Figure 3 shows that the application of Katto’s CHF regime map to
the obtained three clusters. Cluster 2 and cluster 3 belong to N-regime and cluster 1 is in
H-regime. According to CHF mechanism by Katto, cluster 2 and cluster 3 correspond to the
DNB type CHF data and cluster 1 is LFD type. Even though cluster 2 contains two different
test geometries, the combination of PCA and agglomerative hierarchical clustering gives one

meaningful cluster.

IV. Conclusions and Recommendations

The combination of the PCA and agglomerative hierarchical clustering method has been
applied to CHF data and gives meaningful classification of CHF data. The PCA operation for
handling CHF data seems to be a fruitful approach to understand the structure of CHF data,
and the agglomerative hierarchical clustering method provides reasonable clusters. For further
work, the followings are recommended: (a) Expand the raw CHF data and find out more
correlated non-dimensional parameters which show the structure of CHF data clearly. (b) The
parametric trend and correlation scheme should be developed to explain the obtained
classification properly. (c) These methods can be used in other thermal-hydraulic areas for

example, flow regime classification or flooding data classification.
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Table 1. The result of the PCA operation with the data matrix

Correlation Matrix
0Py 7[ 4H i dc
Gl d H g GH
961 1.0000
Gl
L .
d 0.6482 1.0000
AH;
0.4096 -0.1111 1.0000
H fg
de B -
I8 Hfg 0.8381 0.6952 0.5559 1.0000
Eigenvalues of the Correlation Matrix
Eigenvalue Difference Proportion Cumulative
PRIN 1 2.69891 1.79708 0.674728 0.67473
PRIN 2 0.90183 0.62138 0.225458 0.90019
PRIN 3 0.28046 0.16165 0.070114 0.97030
PRIN 4 0.11880 0.029700 1.00000
Eigenvectors
PRIN 1 PRIN 2 PRIN 3 PRIN 4
g‘g; 0.554722 -0.094556 0.704596 -0.432304
727 -0.473907 0.552465 0.623003 0.286464
4H; _
0.355836 0.827459 -0.337153 -0.273899
H fg
dc - e -
C Hfg 0.584017 0.033954 0.041714 0.809957
Table 2. Summary of the characteristics of CHF data used in analysis
ATin ( °F) G (MIb/hr-ft”) (MBtu/hr-ft")
d L/D |No. Data
Range Avg. Range Avg. Range Avg.
TO1 132-222 1925 0.97-4.54 2.13 2.53-4.21 2.77 21 4
T04 52-446 233.8 0.03-0.07 0.04 0.08-0.35 0.16 52 17
T05 0-140 40.6 1.55-4.96 2.55 0.74-1.93 1.30 64.5 44
TO8 43.6-133.5 85.6 1.23-4.71 3.35 1.36-2.19 1.78 67 15
T10 0-361 107.3 0.415-1.64 0.72 0.3-1.74 0.93 76 41
T12 85-434 2477 0.925-7.79 5.19 0.68-2.74 1.83 109 13
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Figure 1. Lower triangular plot of first four principal component scores
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Figure 2. The dendrogram of resulted three clusters
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Figure 3. Application of Katto’s CHF regime map to obtained three clusters
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