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Abstract

  The control rod cusping effect occurs when the heterogeneity within a partially

rodded node (PRN) is not properly incorporated into the nodal calculation involving

large, homogeneous nodes. In the present paper a new rod cusping correction method is

proposed. This method uses fine mesh flux solutions obtained from two one-

dimensional, three-node problems for each PRN. The heterogeneity within the PRN is

explicitly kept and the flux-weighting factor is calculated from the resulting fine-mesh

flux profile. The axial discontinuity factors are then generated with the homogenized

cross section in the PRN for the subsequent nodal calculations. The result of this

method corresponds with the reference result and the computation time spent in the rod

cusping correction is less than 2% of the total neutronic calculation time.

I. Introduction

The control rod cusping effect occurs when the heterogeneity within a partially

rodded node (PRN) is not properly incorporated into the nodal calculation involving

large, homogeneous nodes. In the transient calculation for a rod withdrawal event,

unphysical variation of reactivity due to rod cusping leads to large errors in the

predicted core power. Rod cusping may also cause intolerable errors even in some

eigenvalue calculations as shown in Figure 1. One such example is a rodded depletion



calculation for a 330MWt soluble boron free PWR, SMART whose development is

currently underway by Korea Atomic Energy Research Institute.

In order to resolve the rod cusping problem, it is necessary, first of all, to determine

the axial flux profile within a PRN. The flux profile can be used to calculate flux-

volume weighted homogenized cross sections or axial discontinuity factors. In the

previously known rod cusping correction methods,1-2 approximations were introduced in

the determination of the axial flux profile. Interface displacement1, quadratic flux

representation and forward flux adjoint flux bilinear weighting method2 are the

examples of such approximations. Although the consequence of these approximations

may not be significant in most practical calculations, they could cause unbearable errors

in heavily rodded cases and transient calculations.

In the present paper a new rod cusping correction method is proposed that uses fine

mesh flux solutions obtained from two one-dimensional, three-node problems for each

PRN. The three-node problem consists of the PRN itself and its upper and lower nodes.

In the first three-node problem, the heterogeneity within the PRN is explicitly kept and

the flux-weighting factor is calculated from the resulting fine-mesh flux profile. The

second problem is then solved with the homogenized cross section in the PRN to

determine the axial discontinuity factor to be used in the subsequent nodal calculations.

II. Method

Considering that the axial effect is dominant over the radial one in a rod cusping

problem, one needs to solve just a one-dimensional problem, which is obtainable by the

transverse integration of the three-dimensional diffusion equation, to resolve the rod

cusping problem. As well known, the one-dimensional problem is given as:
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where Qg(z) is the fission or scattering source term depending on the group index, S(z)

is the external source term. As the usual practice in the transverse-integrated nodal

method, it is sufficient to represent the transverse leakage source as a quadratic



polynomial. The quadratic polynomial can be determined at each node using the node

average values of transverse leakage available from the previous iteration of the nodal

calculation. With the transverse leakage polynomial on the right hand side, Eq. (1)

becomes a one-dimensional fixed source problem. In the present method, the one-

dimensional problem is solved for a three-node geometry having the PRN in the middle.

If the heterogeneity is explicitly represented within the PRN, there are four distinctive

regions in the three-node problem.

Since Eq. (1) is a second order ordinary differential equation, it can be solved only

when two boundary conditions or constraints are specified. As the two constraints, one

can take the node average fluxes of the top and bottom nodes determined in the

previous nodal iteration, i.e.:
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where n is the iteration index.

With the constraint of Eq. (2), Eq. (1) can be solved, in principle, analytically given

the cross sections assigned to each of the four regions. However, the three-node

problem is solved here numerically using the fine mesh finite difference scheme in

order to avoid the complexity of the analytic solution. In the discretization, the mesh

sizes are determined for each region with the same number of meshes per node. Since

this is a one-dimensional problem, the time for numerical solution is trivial.

Once the fine mesh solution is determined first for the heterogeneous three-node

problem, the flux weighting factor can be readily obtained as the ratio of the average

flux of the rodded region in the PRN to that of the entire PRN. The flux weighting

factor (ωg) is then used in the following way to obtain the homogenized cross section

( gΣ~ ) for the next nodal calculation as well as for the homogeneous three-node problem:

r
gggg ∆Σ+Σ=Σ ξω~

(3)

where ξ is the volume fraction of the rodded portion and r
g∆Σ is the control rod cross

section.

Figure 2 illustrates the fine mesh flux solutions obtained for the two three-node



problems. As compared to the heterogeneous flux, the homogeneous flux has quite

different slopes as well as values at the boundaries of the PRN. In the nodal calculation

in which the heterogeneity information is lost, therefore, the use of homogenized cross

section might lead to significant errors in the interface current. This problem can be

alleviated if the discontinuity factor obtained as the ratio of the fine-mesh

heterogeneous flux to the fine-mesh homogeneous flux is used in the nodal calculation.

III. Results

In order to demonstrate the effectiveness of the rod cusping correction method

presented above, a simplified rod-withdrawal problem consisting of a checkerboard

array at hot zero power was solved first using the PARCS code3. The checkerboard

problem was created from the NEA/NSC bank withdrawal benchmark problem4 by

taking only the center portion of the core. The model core consists of 2x2x18 nodes

with the reflective boundary condition at the radial boundaries. The control rod is

inserted into the center assembly such that a node located near the mid-plane is partially

rodded by 50%. The reference solution was obtained from a model that had a ten times

more refined axial mesh structure. The boron concentration was adjusted such that the

core was critical by the reference model. In the rod cusping correction calculation, ten

fine meshes per node were used. As shown in Table 1 when no rod cusping correction

was introduced, the keff was calculated as 0.99888 so that the error in keff was –112 pcm.

The error is quite large in this problem because the control rod had a serious impact in

this checkerboard problem. The rod cusping correction for this problem was examined

in two steps. It should be noted that no correction means the simple volume weighting.

The first step used only the flux-weighting factor and the second step used both the

axial discontinuity factor and the flux-weighting factor. At the first step the error was

reduced to –26 pcm and it was further reduced to –5 pcm with the discontinuity factor.

The transient rod withdrawal calculation was examined in the similar way. Figure 3

shows the power vs. time curves, up to 30 seconds into the transient, for the various

cases. Cusp-shaped variations are observed twice in the figure as the rod pass through



the plane boundaries even in the logarithmic scale (marked with the + sign) and the

error is very severe. It is clear from the figure that the present correction method

improves the error significantly.

The second problem was solved for the steady state of the NEACRP PWR rod

ejection benchmark problem case A25 which is a heavily rodded hot full power case.

The reference for this case was obtained by dividing the plane containing the partially

rodded nodes into two planes such that there were no partially rodded nodes in the

reference model. In this case the error in eigenvalue was reduced from –53 to –11 pcm.

In both test cases, the computation time spent in the rod cusping correction was less

than 2% of the total neutronic computation time. Considering the total computation

time that includes the times for T/H calculation and the cross section feedback, the

overhead associated with cusping correction is insignificant. The rod cusping correction

method presented in this paper reduces the errors remarkably and is efficient.
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Table 1. Comparison of Core Eigenvalue(K-eff) with Various Cusping Correction

Methods for the Modified NEA/NSC Bank Withdrawal Benchmark Problem

Correction Method Keff Error(pcm)*

Reference

VW

FVW only

FVW+Discontinuity Factor

1.00000

0.99888

0.99974

0.99995

-

-112

-26

-5

* : Error = (Reference – Correction Method)

Figure 1. K-eff vs. Control Rod Insertion Depth
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Figure 2. Axial Flux Profiles Around a Partially Rodded Node

Figure 3. Comparison of the Transient Core Power Variations Obtained with Various

     Cusping Correction Options for the Checkerboard Rod Withdrawal Problem
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