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1. Introduction 

 
As modern computing systems become increasingly 

powerful, whole-core transport calculations look more 
promising in the near future. However, the amount of 
memory required for whole-core transport 
calculations is quite demanding [1], and computing 
performance still needs to be enhanced. To lessen 
these issues, non-overlapping local/global (NLG) 
iteration has been proposed [2]. The advantages of 
NLG iteration are that it is natural for parallel 
computing and competitive to the partial current-
based Coarse Mesh Finite Difference (p-CMFD) [3] 
acceleration in terms of computing performance. Up 
to now, NLG iteration has been developed only for 
steady-state transport calculation. 

In this paper, NLG iteration is extended to have the 
capability of transient transport calculation. As a 
transient transport kernel, the method of 
characteristics (MOC) is chosen, and applied to 
several test problems. 
 

2. NLG Iteration Scheme 
 

In NLG iteration, local problems are solved by 
transport calculation while the global problem is 
solved by p-CMFD. The local problems are coupled 
with the global problem via local interface boundary 
conditions. 
 
2.1. Local Problem by Transient MOC 
 

The time-dependent transport equation through a 
characteristic line at a given discretized angle j  is 
given as: 
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where all notations are standard in reactor physics. 
 

The delayed neutron precursors are integrated 
analytically with the assumption that the fission 
source is a second-order polynomial in time. In 
addition, a fully implicit method is applied to the time 
derivatives of the angular fluxes, and it is assumed 
that the time discretization terms of the angular fluxes 
are isotropic to avoid huge memory requirements [4]. 
With the above assumptions, the following time 
discretized equation is obtained: 
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where gq  includes the fission source, delayed neutron 
precursor source, and time discretization source. 
 
2.2. Global Problem by p-CMFD 
 

After homogenization, condensation into MG , and 
volume integration on cell I  (or computational coarse 
mesh) for every local problem, the following equation 
is obtained: 
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In p-CMFD formulation, the partial currents are 

given as: 
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where 

 
, the nearest coarse mesh to 

the coarse mesh  on surface , .
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2.3. Iteration Framework 
 
 In NLG iteration scheme, the local domain size is 
identical to an assembly size. The local problems are 
solved under fixed incoming angular flux as the 
boundary condition. The incoming angular fluxes are 
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updated by the partial currents, that are in turn results 
of global p-CMFD, as: 
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 The advantage of p-CMFD is that the partial 
currents are the direct results of p-CMFD, while they 
are not available in CMFD. Therefore, if the global 
problem is solved by CMFD, the incoming angular 
fluxes must be updated under some approximations 
[2]. 
 After all local problems are solved, the 
homogenization and condensation are performed. 
With homogenized parameters, global p-CMFD is 
solved. 
 The NLG iteration is continued until the fission 
source is converged. If the NLG iteration is converged, 
a new NLG iteration is performed at a new time step 
with initial conditions. The initial conditions of the 
NLG iterations of the new time step are taken from 
the results of the NLG iteration of previous time step 
in order to have good initial conditions. 
 

3. Numerical Results 
 
NLG iteration and p-CMFD acceleration have been 

implemented in the in-house code, SPARTA. Two test 
problems are solved by SPARTA and compared to the 
results by other codes. The results of other codes are 
available elsewhere [5]. 

 
3.1 TWIGL 2G Problem 

 
The first problem is the TWIGL 2G problem [6], 

and the geometry is shown in Fig. 1. The transient 
event occurs by changing the cross sections linearly 
(in time) of region 1. The calculation conditions for 
SPARTA is set to be similar to those of DeCART [7]. 
The steady-state results are shown in Table I.  

As shown in Table I, eigenvalues are the same for 
NLG iteration and p-CMFD, and they agreed well 
with those of DeCART and VARIANT-K [8]. In 
addition, the computing performances are quite 
similar for both NLG iteration and p-CMFD 
acceleration. 
 

Table I. Steady-state results : TWIGL 2G 
 

Code SPARTA DeCART VARIANT-K 

Method MOC MOC Variational 
Nodal Method 

Acceleration p-CMFD 
acceleration NLG iteration CMFD - 

effk  0.91598 0.91598 0.91605 0.91609 
Calculation 
time (sec) 241 246 - - 

# of NLG 
(or outer) 
iterations 

14 15 - - 

Region 3 Region 2

Region 2 Region 1                                                                          Region 3

24 cm 32 cm 24 cm

24 cm

32 cm

24 cm

Reflective

Vacuum

Vacuum

 
 

Fig. 1. Geometry : TWIGL 2G 
 

The transient results are shown in Table II, Fig. 2, 
and Table III. The results of SPARTA are overlaid on 
the results given in [5]. 

In transient calculations, the computing 
performances are similar for both NLG iteration and 
p-CMFD acceleration as in the case of steady-state 
calculations. This is due to the good initial conditions 
available for NLG iteration at every time step. The 
power changes over time agreed well with those by 
other codes. 
 

Table II. Regional power comparison : TWIGL 2G 
 

Time Region VARIANT-K DeCART 
SPARTA 

p-CMFD 
acceleration 

NLG 
iteartion 

0 
1 1.570  1.570  1.570  1.570  
2 1.994  1.994  1.994  1.994  
3 0.451  0.450  0.450  0.450  

0.1 
1 1.594  1.594  1.594  1.594  
2 1.982  1.982  1.982  1.982  
3 0.449  0.449  0.449  0.449  

0.2 
1 1.618  1.618  1.618  1.618  
2 1.969  1.970  1.970  1.970  
3 0.448  0.447  0.447  0.447  

0.3 
1 1.536  1.537  1.537  1.537  
2 2.011  2.012  2.011  2.011  
3 0.453  0.452  0.452  0.452  

0.4 
1 1.526  1.526  1.526  1.526  
2 2.017  2.017  2.017  2.017  
3 0.453  0.453  0.453  0.453  

0.5 
1 1.570  1.569  1.570  1.570  
2 1.994  1.995  1.994  1.994  
3 0.451  0.450  0.450  0.450  
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SPARTA 0.01s pCMFD acceleration
SPARTA 0.01s NLG iteration

 
 

Fig. 2. Power vs time : TWIGL 2G 
 

Table III. Computing time for transient : TWIGL 2G 
 

Code SPARTA 
Acceleration p-CMFD acceleration NLG iteration 

Calculation time (sec) 5418 5614 
 
3.2 Mini-core 2D Problem 
 
 The second problem is the Mini-core 2D problem 

[9]. The geometry is shown in Fig. 3. The transient 
event occurs by linearly changing the cross sections 
of UOXR. 

 

UOXR UOXF

UOXF MOXMOX

UOXF

UOXFMOX MOX

All reflective  
 

Fig. 3. Geometry : Mini-core 2D 
 
 The steady-state results are shown in Table IV. All 
eigenvalues agreed well. The computing performance 
of p-CMFD acceleration and NLG iteration are 
similar. 
 
 

Table IV. Steady-state results : Mini-core 2D 
 

Code 
SPARTA 

DeCART VARIANT-K p-CMFD 
acceleration 

NLG 
iteration 

effk  1.05644 1.05644 1.05644 1.05645 
Calculation 
time (sec) 112 139 - - 

# of NLG 
 (or outer) 
iterations 

11 15 - - 

  
Fig. 4, Table V, and Table VI show the transient 
results. As shown in the results, NLG iteration and p-
CMFD acceleration give the same results and agreed 
well with those of other codes. For this problem, NLG 
iteration shows faster computing performance than p-
CMFD acceleration in transient calculations. However, 
the difference between the computing times is less 
than 6 % of the total computing time, so the difference 
can be said to be negligible. 
 

SPARTA 0.002s p-CMFD acceleration
SPARTA 0.002s NLG iteration

DeCART & SPARTA

VARIANT & PARCS

 
 

Fig. 4. Power vs time : Mini-core 2D 
 
Table V. Regional power comparison : Mini-Core 2D 

 

Time Region VARIANT-K DeCART Error 
(%) 

SPARTA 
p-CMFD 

acceleration 
Error 
(%) 

NLG 
iteration 

Error  
(%) 

0.0 
UOXR 0.562  0.562  -0.05 0.562  -0.07 0.562  -0.07 
UOXF 1.033  1.033  0.04 1.033  0.03 1.033  0.03 
MOX 1.076  1.076  0.01 1.076  -0.03 1.076  -0.03 

0.2 
UOXR 0.660  0.660  -0.03 0.660  -0.05 0.660  -0.05 
UOXF 1.031  1.031  0.04 1.031  0.03 1.031  0.03 
MOX 1.054  1.054  -0.04 1.054  -0.03 1.054  -0.03 

0.4 
UOXR 0.660  0.660  -0.03 0.660  -0.05 0.660  -0.05 
UOXF 1.031  1.031  0.04 1.031  0.03 1.031  0.03 
MOX 1.054  1.054  -0.04 1.054  -0.03 1.054  -0.03 

0.6 
UOXR 0.660  0.660  -0.03 0.660  -0.05 0.660  -0.05 
UOXF 1.031  1.031  0.04 1.031  0.03 1.031  0.03 
MOX 1.054  1.054  -0.04 1.054  -0.03 1.054  -0.03 

0.8 
UOXR 0.660  0.660  -0.03 0.660  -0.05 0.660  -0.05 
UOXF 1.032  1.031  0.05 1.031  0.04 1.031  0.04 
MOX 1.054  1.054  -0.04 1.054  -0.03 1.054  -0.03 

1.0 
UOXR 0.660  0.660  -0.03 0.660  -0.05 0.660  -0.06 
UOXF 1.032  1.031  0.05 1.031  0.04 1.031  0.04 
MOX 1.054  1.054  -0.04 1.054  -0.03 1.054  -0.03 
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Table VI. Computing time for transient : Mini-core 2D 
 

Code SPARTA 
Acceleration p-CMFD acceleration NLG iteration 

Calculation time (hr) 5.9 5.6 
 

4. Conclusions 
 
 NLG iteration with p-CMFD has been successfully 
extended to have transient capability. As in the 
steady-state case, NLG iteration and p-CMFD 
acceleration give identical results if the solutions are 
converged. In addition, due to the good initial 
conditions for each time step, the computing 
performance is very promising in transient 
calculations compared to p-CMFD acceleration. 
 Since NLG iteration is natural for parallel 
computing, the computing performance could be 
enhanced further if local problems are solved 
independently with parallel computing nodes. Parallel 
computing is planned for future work. 
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