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1. Introduction 
 

For the analysis of transient two-phase flows in 
nuclear reactor components, a three-dimensional 
thermal hydraulics code, named CUPID, has been 
developed at Korea Atomic Energy Research Institute 
[1]. It has been validated against various conceptual 
problems and experimental results, but mainly focused 
on the low void fraction flows such as a bubbly flow. In 
order to extend its applicability to high void fraction 
flows such as an annular flow and film flow, additional 
validation procedures are required and adequate 
constitutive models for those flows need to be 
implemented. In the present study, one of the required 
constitutive models of the two-phase equations, a wall 
shear stress model for a thin liquid film, was 
implemented and tested. This paper introduces the 
mechanistic wall shear stress model for a liquid film 
and then, presents the simulation result using CUPID 
with the model for a conceptual problem of a downward 
liquid film flow. The simulation result was compared 
with the analytical solution and the STAR-CCM+ [2] 
calculation result for the verification and validation.  

 
2. Mechanistic Liquid Film Model 

 

When a liquid film is simulated using a Eulerian-
Eulerian two-fluid model, different sets of constitutive 
models need to be adopted depending on the relative 
size between the liquid film thickness and  the first cell 
from the wall on which it flows down. If the liquid film 
is relatively very thin and therefore, the former is much 
smaller than the latter, a wall shear stress model of a 
thin liquid film should be applied to consider the 
velocity gradient across the thickness. In the present 
study, an approach which evaluates the wall shear stress 
using a force balance equation of a liquid film was 
implemented into CUPID.  

The force balance equation is; 
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where E is the eddy diffusivity in the liquid film [3]. 
Note that for a liquid film in a stagnant gas, 

sinGdP dz gρ θ= .  And by using no-slip boundary 
condition at 0y = , and 0LdU dy =   at Fy δ= , 
integration of equation will give  
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If mass flow is given, the liquid film thickness and 

velocity profile which satisfy 
*
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found numerically as illustrated in the flowchart, Fig. 1. 
 

3. Validation of the Implementation 
 

In order to validate the implemented model in 
CUPID, a conceptual problem for a downward liquid 
film as shown in Fig. 2 was simulated and the results 
were compared with the analytical solution obtained 
from Eqs. (1) and (2) and the STAR-CCM+ simulation 
results. In the STAR-CCM+ calculation, the fluid-film 
model [2], which is devoted to the thin film simulation, 
was applied. As shown in Fig. 3, the predicted 
downward liquid velocities are remarkably decreased 
by the implementation of the wall shear stress model. 
Without it, the wall shear stress is under-estimated 
because the velocity gradient across the thin liquid film 
cannot be taken into account and it results in 
significantly over-predicted liquid velocity. With the 
implemented model, the predicted liquid velocity and 
the film thickness are in reasonably good agreement 
with the analytical solution after being the fully-
developed and the STAR-CCM calculation results as 
presented in Figs. 3 and 4. The error between the 
analytical solution and the simulation result is less than 
2% in the thickness and it is likely to be caused by the 
effect of the interfacial friction forces. In the analytical 
solution, the interfacial friction was neglected, on the 
other hand in the simulations, it was included. The 
effect of mesh size was also investigated with four 
different first cell sizes from the wall, 3.3 mm~20mm, 
and the converged calculation results can be obtained 
even with large mesh size as shown in Fig. 5. 
Meanwhile, Fig. 6 shows the calculation results of the 
void fraction and velocity distributions calculated by 
CUPID. 

 
4. Conclusion 

 

From this validation against the conceptual problem, 
it was found that the implemented model can reproduce 
the downward liquid film behavior, such as the film 
thickness and the velocity appropriately. However, the 
present work is limited to the downward liquid film 
merely, so that more validations for high void fraction 
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flows are required with various flow conditions. 
Moreover, since the model is evaluated for the laminar 
liquid film, the influence of the turbulence on the film 
behavior needs to be tested.  
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Fig. 1 Flowchart of the wall shear stress model 
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Fig. 2 Calculation condition  
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Fig. 3 Calculation Result: liquid velocity 
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Fig. 4 Calculation Result: film thickness 
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Fig. 5 First cell size effect 

 
 

             

Fig. 6 Calculation Result: void fraction and velocity  


