Radioiodination of Antibody protein using FCCS12026, a novel linker for increasing stability against deiodination in vivo

Dan Bee Choi^{1,2}, Byoung Soo Kim¹, Eun Jung Kim^{1,2}, Se-Ho Park², Tae Hyun Choi¹ ¹Department of Molecular Imaging Center, Korea Institute of Radiological and Medical Sciences, Korea ²School of Life Sciences, Korea University, Anam-Dong, Sungbuk-Gu, Seoul, Korea

*Corresponding author: thchoi@kirams.re.kr

1. Introduction

Radioiodine is most commonly employed to prepare radiolabeled protein with high specific activity for *in vitro* and *in vivo* applications[1,2]. However, a major shortcoming of radioiodinated proteins prepared by direct labeling methods is deiodination *in vivo*. To decrease deiodination, a new bifunctional linker for radioiodination of proteins, N-(4-Isothiocyanatobenzyl)-2-(3-(tributylstannyl)phenyl)acetamide (FCCS12026), was designed and synthesized[3]. The aims of this study are to optimize conditions for radioiodination of an antibody and to assessment of immunoreactivity by Lindmo assay[4].

2. Methods and Results

2.1 Indirect radiolabeling of Cetuximab using the linker

For the indirect radiolabeling, FCCS12026 was radioiodinated using chloramine-T to give, N-(4-Isothiocyanato benzyl)-2-(3-[¹²⁵I]phenyl)acetamide ([¹²⁵I]-FCCS12027) which was purified by radio-HPLC. To optimize conditions for radioiodination of cetuximab, the mixture of [¹²⁵I]-FCCS12027 and Cetuximab was incubated at various condition. Cetuximab (200 μ g; 5.0 mg/ml) in carbonate buffer (pH 9.4) or borate buffer (ph 8.5) was added to ¹²⁵I-labled FCCS 12026 in DMSO. The mixture was vortexed and incubated at Room temperature, 4 or 37 °C for 1, 2, 4 or 24 h. Then the radiolabeling yield was measured by radio-TLC (n=3).

Table 1: Radiolabeling yield after 1, 2, 4 or 24 h reaction of [¹²⁵I]-FCCS 12027 with Cetuximab in borate buffer at various temperature

			((unit . 70)	
temperature	1h	2h	4h	24h	
4°C	22.57	25.84	28.81	46.85	
	±0.82	±2.52	±3.47	±2.84	
Room	45.45	58.98	73.47	84.33	
temperature	±5.61	±0.79	±2.93	±0.78	
37°C	80.16	84.86	91.20	37.53	
	±1.92	±2.10	±0.77	±2.95	

Table 2 : Radiolabeling yield after 1, 2, 4 or 24 h reaction of $[^{125}I]$ -FCCS 12027 with Cetuximab in Cabonate buffer at various temperature

				(umt:%)
temperature	1h	2h	4h	24h
4°C	32.07	33.60	24.17	62.54
	± 1.01	± 2.03	±0.14	±1.63
Room temperature	55.39	67.44	75.83	76.18
	± 1.90	± 1.05	±1.66	±1.63
37°C	80.63	38.46	30.40	38.16
	±1.21	±2.06	±2.17	±1.30

Radiolabeling yield of [¹²⁵I]-FCCS12027-Cetuximab was influenced by buffer PH, reaction time and incubation temperature. In conclusion, the optimized condition for [¹²⁵I]-FCCS 12027-Cetuximab is as in the following. The reaction buffer, time and temperature were borate buffer, 2h and 37°C. Labeled mAb was purified by ZebaTM Spin Desalting column, 0.5ml (Thermo scientific, Piscataway, NJ, USA) using DPBS as running buffer. Then radiochemical purities were measured by radio-TLC.

[¹²⁵I]-FCCS12027-Cetuximab

Fig. 1. Result of radio-TLC about reaction of [¹²⁵I]-FCCS 12027 with Cetuximab at 37°C for 2h in Borate buffer.

2.2 cell binding assay

 $[^{125}I]$ -FCCS12027-Cetuximab was prepared by optimized condition as described above. Direct labeling antibody, $[^{125}I]$ -Cetuximab is prepared by chloramine-T method. Cetuximab (60 µg; 5.0 mg/ml) in BupH Phosphate buffer (pH 7.2) were added Na¹²⁵I in 0.1N NaOH, followed by 10 µl of a 1 mg/ml solution of Chloramine T in BupH phosphate buffer. After 20 sec at

room temperature, the reaction was terminated with 10μ l of a 2.5mg/ml solution of sodium metabisulfite. The labeled monoclonal antibodies were isolated by ZebaTM Spin Desalting column, 0.5 ml (Thermo scientific, Piscataway, NJ, USA) using DPBS as running buffer. Then radiochemical purities were measured with radio-TLC.

PC 9 cells (human lung adenocarcinoma) were grown in RPMI, supplemented with 10% fetal bovine serum (FBS; JHR Biosciences, Lenexa, KS), and 1% antibiotics (Gibco, Carlsbad, CA). The medium was changed twice or three times per week. The cells were cultured at 37 °C in a 5% CO₂ atmosphere.

Serial dilutions of PC 9 cells $(1 \times 10^7 - 2 \times 10^4 \text{ cells})$ in 1% BSA/PBS were incubated with [¹²⁵I]-Cetuximab and [¹²⁵I]-FCCS12027-Cetuximab (20 kcp m) for 1 h at 4 °C. The cells were then centrifuged and washed twice with 1% BSA/PBS[5]. The radioactivity of the pellet was counted with gamma counter (Wizar d; PerkinElmer). The immunoreactivities of radiolabel led antibodies were estimated by Lindmo method[5].

Fig. 2. cell binding assay of [¹²⁵I]-Cetuximab and [¹²⁵I]-FCCS 12027-Cetuximab to PC-9 cells

3. Conclusions

We have optimized reaction conditions for [125 I]-FCCS 12027-Cetuximab. This immunoreactivity result supports that newly developed FCCS12027 will be a promising bifunctional linker for radioiodination of proteins for *in vivo* applications including radioimmuno -imaging and therapy

REFERENCES

[1] Michael R. Zalutsky, Michael A. Noska, Edward V. Colapinto, et al., Enhanced Tumor Localization and in Vivo Stability of a Monoclonal Antibody Radioiodinated Using N-Succinimidyl 3-(Tri-n-butylstannyl)benzoate, Cancer Reserch, Vol.49, p. 5543-5549, 1989

[2] E.B. Araujo*, J.S. Santos, M.T. Colturato, E. Muramoto, C.P.G. Silva, Optimization of a convenient route to produce N-succinimidyl 4-radiodobenzoate for radioiodination of proteins, Sciencedirect, Vol.58, p. 667-673, 2003

[3] Michael R. Zalutsky and Acharan S. Narula, Radiohalogenation of a Monoclonal Antibody Using an N-Succinimidyl 3-(Tri-n-butylstannyl)benzoate Intermediate, Cancer Reserch, Vol.48, p. 1446-1450, 1988

[4] Ganesan Vaidyanathan and Michael R. Zalutsky, Radioiodination of Antibodies via N-Succinimidyl 2,4-Dimethoxy-3- (trialkylstannyl) benzoates, Bioconjugate chem, Vol.1, p. 387-393, 1990

[5] Peter M. Smith-Jones, Shankar Vallabahajosula, Stanley J. Goldsmith, et al., *In Vitro* Characterization of Radiolabeled Monoclonal Antibodies Specific for the Extracellular Domain of Prostate-specific Membrane Antigen, Vol 60, P.5237-5343, 2000