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1. Introduction 

 
For a metal fueled Sodium-cooled Fast Reactor (SFR), 

validation of the core neutronic characteristics is one of 

the most important issues. For a conventional 

Pressurized Water Reactor (PWR), experiment data can 

be easily secured from many operating reactors [1]. For 

innovative reactors such as Prototype Gen-IV Sodium-

cooled Fast Reactor (PGSFR), unfortunately, 

experiment data from an operating reactor are 

unavailable because there are few operating reactors in 

the world. Hence, a critical experiment is the only way 

to obtain meaningful experiment data for the target core.  

However, there is a considerable geometrical 

difference between the critical assembly for a critical 

experiment and the target core. The neutron 

characteristics of a system are influenced by the 

geometrical difference.  

A number of researches have been performed to 

confirm the similarity between a critical experiment and 

a real reactor using a conventional representativity 

factor [2, 3, 4, 5, 6]. The conventional representativity 

factor defined as 
,

T

E R

T T

E E R R

S US

S US S US

 provides insight of 

similarity between two sensitivity vectors for cross-

sections, but it did not provide a quantitative value [6, 

7]. Hence, up to now, the influence of geometrical 

difference to the reactivity is believed to be negligible.  

In this paper, a new Jacobian matrix method is 

proposed to provide a quantitative error for geometrical 

differences between two systems. In this method, 

reactivity of the critical assembly is decomposed into 

phenomenon-based reactivity and geometry-based 

reactivity. The reactivity is then transformed into a 

target core geometry using a Jacobian matrix. Then, 

non-linearity of two different systems can be derived by 

comparing the transformed reactivity with the original 

reactivity of the target core. The maximum error of the 

transformed reactivity can be used as an additional 

uncertainty of the geometrical difference.  

 

2. Jacobian Matrix Method  

 

Suppose that the reactivities of x phenomenon at the 

critical assembly, 
,

ˆ
x CA

ρρρρ , and the reactivities of x 

phenomenon at a real reactor, 
,
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ρρρρ  , can be written as 

,
ˆ , ,T

x CA x CA x CA
for allρ ρ ρ ρ ρρ ρ ρ ρ ρρ ρ ρ ρ ρρ ρ ρ ρ ρ= ∈= ∈= ∈= ∈

� � �� � �� � �� � �

            

(1)  

,
ˆ , ,T

x R x R x CA
for allρ ρ ρ ρ ρρ ρ ρ ρ ρρ ρ ρ ρ ρρ ρ ρ ρ ρ= ∈= ∈= ∈= ∈

� � �� � �� � �� � �

            

(2)  

where the reactivity component of the x phenomenon is 

,

,

,

,

,

T

L x

C xT

x

F x

xνννν

ρρρρ

ρρρρ
ρρρρ

ρρρρ

ρρρρ

    
    
    ====
    
    
        

����

                               

(3)  

and the geometrical reactivity component of the critical 

assembly is 
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(4)  

and the geometrical reactivity component of the real 

reactor is 
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(5)  

We can then introduce a Jacobian matrix, which 

transforms the geometrical reactivity component from 

the critical assembly to a real reactor, such as 

,
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where a Jacobian matrix G is  
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and errors coming from the non-linearity is  
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Since directly calculating the exact Jacobian 

component in Eq. (6) is not easy, we introduce the 

following approximation: 
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in which the approximated Jacobian matrix Gɶɶɶɶ
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and associated errors coming from the approximation is  
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Eq. (9) can then be written as 
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where  
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Eq. (2) can be re-written using the above-defined 

constants as 
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Eq. (17) is the reactivity decomposition used in 

reference [].  

Now, the approximated Jacobian components are 

obtained following the least-square method for all 

reactivities as 
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The solutions can then be obtained in the following 

matrix form: 
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Finally, we can obtain the errors coming from non-

linearity originating from the geometrical difference 

with an additional error, ε
T

x R
ρ ρρ ρρ ρρ ρ
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,

 

as  
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(24) 

Although the additional error coming from the 

approximated Jacobian matrix is still included in Eq. 

(24), we can obtain the similarity between the two 

systems as a quantitative error form. 

 

3. Models for Critical Assembly and Target Core 

 

The BFS-109-2A critical assembly model, the target 

U-Zr fueled core model, and the uranium nitride (UN) 

fueled core are considered. The configurations of the 

critical assembly and target U-Zr fueled core models are 

described in reference [6]. The uranium nitride fueled 

core is configured similarly as the target U-Zr core 

except the equivalent diameter and height of the active 

core. The property of the uranium nitride fuel is based 
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on reference [9]. The configuration data of the three 

cores are shown in Table I.  

 

 

Table I: Geometrical parameters of the considered cores 

 
Critical 

assembly 

Target U-Zr 

core 
UN core 

Equivalent 

diameter of 

core(D) 

124.33 142.79 171.40 

Height of 

active core(H) 
95.43 109.599 100 

D/H Ratio 1.30 1.30 1.71 

 

The Jacobian matrix method was applied for fuel 

axial reactivity phenomena. Fuel rods in the target U-Zr 

core and UN core were elongated 7.848% axially, 

which is the identical expansion rate to the modified 

fuel cell in the BFS-109-2A model [10]. Seven radial 

regions were considered for local expansion reactivities, 

as shown in Table II. The elongated fuel rods or 

assemblies were applied from the central region of the 

core to the peripheral region of the core.    

 

Table II: Number of elongated fuel subassemblies/rods for 

each fuel expansion region 

 
Critical 

assembly 

Target U-Zr 

Core and UN 

core 

Volume ratio 

of elongated 

region 

Reference 0 0 0.00 

Region 1 112 12 25.00 

Region 2 168 18 37.50 

Region 3 224 24 50.00 

Region 4 280 30 62.50 

Region 5 336 36 75.00 

Region 6 392 42 87.50 

Region 7 448 48 100.00 

 

4. Analysis Results 

 

In this study, the MCNP5 code [11] was used with 

the continuous energy ENDF/B-VII.0 library to omit 

uncertainties in a multi-group cross-section.  

Neutron spectrums in the central core region are 

shown in Fig. 1. As expected, the nitride fueled core 

showed considerable differences in neutron spectrum, 

while the target U-Zr core showed good agreement.  
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Fig. 1. Neutron spectrums in the central core region 

 

The components of the fuel axial expansion 

reactivities for the considered regions are shown in Figs. 

5, 6, and 7.  
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Fig. 2. Distributions of leakage reactivities in various regions 
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Fig. 3. Distributions of capture reactivities in various regions 
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Fig. 4. Distributions of fission reactivities in various regions 

 

Unlike neutron spectrums at the core central region, 

the UN core showed more similar capture reactivity 

distributions compared to the critical assembly, whereas 

the target U-Zr core showed more similar fission and 

leakage distributions compared to the critical assembly.  

However, from the above reactivity distributions and 

neutron spectrums, it is still difficult to decide on the 

uncertainty increment when the BFS-109-2A 

experiments are used to target the U-Zr core or UN core. 

Table III and Table IV showed transformed 

reactivities from the target U-Zr and UN cores, 

respectively, using the Jacobian matrix method. For fuel 

axial expansion reactivity, the target U-Zr core can be 

transformed into a critical assembly with a maximum 

error of 4.2%, while the UN core can be transformed 

into a critical assembly with a maximum error of 13.8%. 

As mentioned in the previous chapter, this error comes 

from the non-linearity of the geometry and 

approximated Jacobian matrix.  

 

Table III: Transformed reactivities from the target U-Zr 

Core  

 
Critical 

assembly 

Transforme

d from U-Zr 

Core  

Difference  

[pcm] 

Difference  

[%] 

Region 1 -835.9 -835.9 0.0 0.0 

Region 2 -1170.4 -1170.4 0.0 0.0 

Region 3 -1474.3 -1474.3 0.0 0.0 

Region 4 -1726.3 -1758.9 32.5 -1.9 

Region 5 -1946.6 -1960.6 14.0 -0.7 

Region 6 -2140.7 -2231.3 90.6 -4.2 

Region 7 -2320.4 -2392.2 71.8 -3.1 

 

Table IV: Transformed reactivities from the UN Core  

 
Critical 

assembly 

Transforme

d from U-Zr 

Core  

Difference  

[pcm] 

Difference  

[%] 

Region 1 -835.9 -835.9 0.0 0.0 

Region 2 -1170.4 -1170.4 0.0 0.0 

Region 3 -1474.3 -1474.3 0.0 0.0 

Region 4 -1726.3 -1670.6 -55.7 3.2 

Region 5 -1946.6 -1746.1 -200.5 10.3 

Region 6 -2140.7 -1940.2 -200.5 9.4 

Region 7 -2320.4 -2000.8 -319.6 13.8 

 

5. Conclusions and Discussions 

 

In this paper, a new Jacobian matrix method was 

proposed to assess the similarity quantitively between 

two different systems for neutron characteristics. In 

addition, unlike other methods for similarity decision, 

the proposed method reflects the sensitivity of the 

geometry as well as sensitivity of the isotopes.   

Although an unavoidable additional error still 

remains in the proposed method, the quantitative 

geometrical difference in the reactivity can be used as 

an additional uncertainty for validating the real reactor 

cores.  

Application of the proposed method to the other 

reactivities and other critical assemblies, such as ZPPR 

series and BFS-73-1, remains as future work.  

Meanwhile, the proposed method will also be used to 

make a configuration of a mock-up experiment for the 

initial uranium core of the PGSFR.  
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