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1. Introduction 

 
A subchannel analysis code MATRA [1] is under 

development at KAERI for the evaluation of thermal 

margin in various types of reactor cores as well as for 

the multi-physics calculations coupled with neutronics 

and/or fuel performance codes. A stand-alone 

calculation of MATRA code used up pertinent 

computing time for the thermal margin calculations 

while a relatively considerable time is needed to solve 

the whole core pin-by-pin problems. In addition, it is 

strongly required to improve the computation speed of 

the MATRA code to satisfy the overall performance of 

the multi-physics coupling calculations [2]. Therefore, a 

parallel approach to improve and optimize the 

computability of the MATRA code is proposed and 

verified in this study. The parallel algorithm is 

embodied in the MATRA code using the MPI 

communication method [3] and the modification of the 

previous code structure was minimized. An 

improvement is confirmed by comparing the results 

between the single and multiple processor algorithms. 

The speedup and efficiency are also evaluated when 

increasing the number of processors. 

 

2. Description of Parallel Algorithm 

 

In this section, the algorithm used to embody the 

parallel computing function into the MATRA code is 

proposed and described. The parallel algorithm was 

developed by minimizing the modification of the 

previous single computing algorithm.  

 

2.1 Single Process Algorithm 

 

The MATRA code applies an implicit method called 

by SCHEME algorithm. The first order backward 

difference scheme for both the time and space is applied.  

For the convection term, an upwind scheme is specially 

applied. In the present single computing SCHEME 

algorithm, a solving progress direction is identical to the 

main flow direction, that is, from upstream to 

downstream. Therefore, the solution for thermal-

hydraulic field is sequentially found as time-marching. 

The calculation flow of the SCHEME can be divided 

by two distinct do-loops, an inner do-loop and an outer 

do-loop. In the inner loop, the cross flows between 

subchannels, axial flow, properties, temperature, and so 

on, are solved at the axial location JX. At this time, the 

solved values at the axial location JX-1 are applied to 

the convection terms. In the same way, all of the 

calculating domain is solved from the bottom to the top, 

sequentially, plane by plane. The entire axial sweep 

means the single outer iteration, and the calculation is 

repeated until the convergence criteria are satisfied. 

This is the key of the parallel algorithm as described in 

the next section. 

 

2.2 Parallel Process Algorithm 

 

In the SCHEME algorithm of the MATRA code, all 

unknown values including the cross flow and axial flow 

are solved at the present axial node, and the domain to 

solve then moves to the next axial node. At this time, 

the previous single processor algorithm can calculate 

only one axial plane at once. The concept of the parallel 

algorithm of the MATRA code is that the planes of the 

same time step are simultaneously solved in the multiple 

processors. The concept of this parallel algorithm was 

shown in Fig. 1. In the figure, JX means the axial 

location. It was assumed that the number of axial node 

is 50 and the parallelized rank is 5, which means that the 

5 processors are used to calculate. As shown in Fig. 2, 

when the axial plane #1 is calculated on processor #1, 

the axial planes #2 ~ #4 are calculated on processors #2 

~ #4, simultaneously. In this example, the 4 axial planes 

are solved during the time during which one axial plane 

will be calculated in the previous SCHEME algorithm. 

After each plane on each processor is solved, the next 

planes are calculated in the same way. Even though each 

outer iteration consists of 51 calculations in the single 

computing algorithm, 13 calculations are needed to 

execute one outer iteration in this parallel example. In 

addition, the master processor collects the solved results 

at each plane and broadcasts the merged results before 

the calculation of the next time step is started.  

The calculation flow of the parallel computing 

compared to a single computing algorithm in section 2.1 

is shown Fig. 2. At the first outer iteration, all of the 

processors execute the same calculation with the 

previous single computing algorithm to generate an 

initial value at each plane. This initialization might 

increase the calculation time. However, it can help to 

decrease the total number of iterations in order to 

converge. The axial planes are divided and calculated 

on all processors from the second outer iteration. 

 

3. Verification of Parallel Algorithm 

 

Verification of the developed parallel algorithm of 

the MATRA code was executed for three subchannel 

models, which are a 5 by 5 bundle, 1/8 core, and whole 
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core of SMART reactor. The parameters used to 

investigate the dimensions of the subchannel model are 

summarized in Table I. The comparisons between the 

single and the parallel computing result of the MATRA 

code for the subchannel model in Table I were 

conducted in view of the channel exit, bundle average, 

and MDNBR channel. The results are summarized as 

the relative and absolute difference term between the 

single, and parallel computing and are shown in Table II. 

It is shown that the results of two calculations are 

identical. At this time, the convergence criteria applied 

the same values. The axial distributions of CHFR are 

depicted, as shown in Fig. 3. The MDNBR differences 

between the single and the parallel computing are 

evaluated as it was within +/- 0.005. 
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Fig. 1. The examples of the parallel algorithm (when number 

of axial plane and the SIZE are 50 and 5, respectively) 

 

DO NT=NTSRT, NDTP1

DO NN=ISTART, NTRIES

NN=1

JX = 1

DO JX=RANK, NDX+1, SIZE-1

RANK=0

JX = 1

YES NO

NO

YES

YES

NO

NO

YES

DO JX=1,NDXP1

START

RANK=0

MPI_INIT

BCAST Filename

DO JX=RANK, NDX+1, SIZE-1

RANK=0

NO

YES

MPI_ISEND

MPI_IRECV

RANK=0

MPI_FINALIZE

CALL RESULT(NT)

END  
Fig. 2. Calculating flow of the parallel algorithm  

 

Table I: Description of subchannel model for SMART 

  5 X 5  1/8 Core Whole Core 

Channel # 36 2,331 16,780 

ROD # 25 2,119 15,048 

Axial Node # 50 50 50 

GAP # 60 4,536 33,252 

 

Table II: Verification results of parallel computing 

Enthalpy Temp. Density Equil. OSV TRUE Void Flow Mass Flux

% oC kg/m3 - - - - % %

MEAN -0.044 0.000 0.307 0.000 0.000 0.000 0.000 0.009 0.009

STD 0.002 0.000 0.027 0.000 0.000 0.000 0.000 0.050 0.050

MAX -0.040 0.000 0.342 0.000 0.000 0.000 0.000 0.083 0.083

MIN -0.047 0.000 0.255 -0.001 0.000 -0.001 -0.001 -0.082 -0.082

MEAN 0.007 0.016 -0.038 0.000 0.000 0.000 0.000 -0.002 -0.002

STD 0.037 0.082 0.266 0.001 0.000 0.000 0.000 0.109 0.109

MAX 0.138 0.300 0.526 0.002 0.000 0.000 0.000 0.335 0.335

MIN -0.068 -0.140 -0.994 -0.001 0.000 0.000 0.000 -0.344 -0.339

MEAN -0.002 -0.005 0.006 0.000 0.000 0.000 0.000 0.006 0.006

STD 0.033 0.076 0.217 0.000 0.000 0.000 0.000 0.135 0.135

MAX 0.114 0.250 0.373 0.002 0.000 0.000 0.000 0.566 0.565

MIN -0.063 -0.150 -0.774 -0.001 0.000 0.000 0.000 -0.265 -0.265

Delta-P Enthalpy Temp. Density Equil. OSV TRUE Void Flow MassFlux Velocity

% % oC kg/m3 - - - - % % %

MEAN -0.285 -0.006 -0.001 0.048 0.000 0.000 0.000 0.000 0.000 0.000 -0.019

STD 0.103 0.015 0.002 0.139 0.000 0.000 0.000 0.000 0.000 0.000 0.054

MAX 0.000 0.021 0.000 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.090

MIN -0.542 -0.045 -0.010 -0.300 -0.001 0.000 0.000 0.000 0.000 0.000 -0.150

MEAN 0.030 0.001 0.001 0.007 0.000 0.000 0.000 0.000 0.000 0.000 -0.001

STD 0.038 0.001 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.002

MAX 0.287 0.002 0.010 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MIN 0.000 0.000 0.000 -0.006 0.000 0.000 0.000 0.000 0.000 0.000 -0.005

MEAN 0.031 -0.001 -0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

STD 0.013 0.001 0.004 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.002

MAX 0.094 0.000 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.005

MIN 0.000 -0.002 -0.010 -0.008 0.000 0.000 0.000 0.000 0.000 0.000 -0.005

Delta-P Enthalpy Temp. Density Equil. OSV TRUE Void Flow MassFlux Velocity

% % oC kg/m3 - - - - % % %

MEAN -0.377 -0.011 -0.004 0.123 0.000 0.000 0.000 0.000 0.019 0.019 -0.019

STD 0.194 0.017 0.007 0.150 0.000 0.000 0.000 0.000 0.047 0.047 0.083

MAX 0.000 0.008 0.000 0.425 0.000 0.000 0.000 0.000 0.153 0.153 0.105

MIN -0.936 -0.049 -0.020 -0.084 -0.001 0.000 -0.001 -0.001 -0.082 -0.082 -0.220

MEAN 0.038 -0.026 -0.059 0.182 0.000 0.000 0.000 0.000 0.309 0.309 0.282

STD 0.072 0.020 0.043 0.151 0.000 0.000 0.000 0.000 0.203 0.203 0.209

MAX 0.092 0.000 0.000 0.464 0.000 0.001 0.000 0.000 0.708 0.708 0.682

MIN -0.195 -0.060 -0.120 0.000 -0.001 0.000 0.000 0.000 -0.056 -0.056 -0.133

MEAN -0.047 0.016 0.037 -0.108 0.000 0.000 0.000 0.000 -0.060 -0.061 -0.044

STD 0.060 0.014 0.032 0.096 0.000 0.000 0.000 0.000 0.054 0.054 0.056

MAX 0.000 0.036 0.080 0.000 0.001 0.000 0.000 0.000 0.044 0.044 0.078

MIN -0.285 0.000 0.000 -0.253 0.000 0.000 0.000 0.000 -0.168 -0.167 -0.159
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Fig. 3. The SCHEME algorithm of MATRA code solves the 

unknowns according to the axial direction, step by step 
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4. Speedup of MATRA Parallel Version 

 

A speedup of the MATRA parallel version was 

evaluated. The speedup is one of the parameters in 

multi-processing systems, which is defined as how much 

a parallel computing is faster than single computing. 

The required time to obtain the converged solution is 

compared by increasing the number of processors and is 

summarized in Table III. The NP means the number of 

processors used to calculate and MASTER, MEAN, 

MAX mean the spent time of a master processor, the 

averaged-spent time of all processors, and the maximum 

spent time out of all processors, respectively. It was 

noted that the effects of parallel computing are not 

shown when the problem dimension is small such as in 

the 5 by 5 bundle case. The speedup and efficiency of 

two cases, the 1/8 core and whole core case are shown 

in Figs. 4 and 5, respectively. As shown in the figures, 

the speedup and efficiency are decreased as the number 

of processor is increased according to Amdahl’s Law. 

Moreover, it was shown that those were decreased as 

the problem size is increased because the cost of 

communication among clusters is increased. However, 

the performance of the MATRA code is greatly 

improved in view of the computation time. 

 

Table III: Speedup and efficiency of MATRA parallel 

version (unit: sec) 

NP 1 6 11 16 21 26

MASTER 0.914 0.588 0.792 1.521 1.545 1.501

MEAN 0.914 0.645 0.671 1.443 1.876 1.606

MAX 0.914 0.802 0.855 1.785 2.317 2.076

Speedup 1.000 1.140 1.069 0.512 0.394 0.440

Efficiency 1.000 0.190 0.097 0.032 0.019 0.017

NP 1 6 11 16 21 26

MASTER 394.873 58.739 40.489 32.176 28.213 26.746

MEAN 394.873 57.912 39.610 31.215 27.566 25.284

MAX 394.873 58.739 40.489 32.176 28.213 26.746

Speedup 1.000 6.723 9.753 12.272 13.996 14.764

Efficiency 1.000 1.120 0.887 0.767 0.666 0.568

NP 1 6 11 16 21 26

MASTER 1934.319 499.486 359.990 268.785 257.287 232.862

MEAN 1934.319 493.613 362.154 280.076 267.774 245.164

MAX 1934.319 499.486 362.628 282.304 271.874 250.208

Speedup 1.000 3.873 5.334 6.852 7.115 7.731

Efficiency 1.000 0.645 0.485 0.428 0.339 0.297
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Fig. 4. Speedup of MATRA parallel version 
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Fig. 5. Efficiency of MATRA parallel version 

 

5. Conclusion 

 

The parallel algorithm was implemented to the 

subchannel code MATRA using the MPI. The 

performance of the parallel algorithm was verified by 

comparing the results with those from the MATRA with 

the single processor. It is also noticed that the 

performance of the MATRA code was greatly improved 

by implementing the parallel algorithm for the 1/8 core 

and whole core problems.  
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