
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 29-30, 2014

Parallelization of Subchannel Analysis Code MATRA

Seong-Jin Kim

*
, Dae-Hyun Hwang, Hyouk Kwon

Korea Atomic Energy Research Institute, Daejeon, Korea
*
Corresponding author: sjkim2@kaeri.re.kr

1. Introduction

A subchannel analysis code MATRA [1] is under

development at KAERI for the evaluation of thermal

margin in various types of reactor cores as well as for

the multi-physics calculations coupled with neutronics

and/or fuel performance codes. A stand-alone

calculation of MATRA code used up pertinent

computing time for the thermal margin calculations

while a relatively considerable time is needed to solve

the whole core pin-by-pin problems. In addition, it is

strongly required to improve the computation speed of

the MATRA code to satisfy the overall performance of

the multi-physics coupling calculations [2]. Therefore, a

parallel approach to improve and optimize the

computability of the MATRA code is proposed and

verified in this study. The parallel algorithm is

embodied in the MATRA code using the MPI

communication method [3] and the modification of the

previous code structure was minimized. An

improvement is confirmed by comparing the results

between the single and multiple processor algorithms.

The speedup and efficiency are also evaluated when

increasing the number of processors.

2. Description of Parallel Algorithm

In this section, the algorithm used to embody the

parallel computing function into the MATRA code is

proposed and described. The parallel algorithm was

developed by minimizing the modification of the

previous single computing algorithm.

2.1 Single Process Algorithm

The MATRA code applies an implicit method called

by SCHEME algorithm. The first order backward

difference scheme for both the time and space is applied.

For the convection term, an upwind scheme is specially

applied. In the present single computing SCHEME

algorithm, a solving progress direction is identical to the

main flow direction, that is, from upstream to

downstream. Therefore, the solution for thermal-

hydraulic field is sequentially found as time-marching.

The calculation flow of the SCHEME can be divided

by two distinct do-loops, an inner do-loop and an outer

do-loop. In the inner loop, the cross flows between

subchannels, axial flow, properties, temperature, and so

on, are solved at the axial location JX. At this time, the

solved values at the axial location JX-1 are applied to

the convection terms. In the same way, all of the

calculating domain is solved from the bottom to the top,

sequentially, plane by plane. The entire axial sweep

means the single outer iteration, and the calculation is

repeated until the convergence criteria are satisfied.

This is the key of the parallel algorithm as described in

the next section.

2.2 Parallel Process Algorithm

In the SCHEME algorithm of the MATRA code, all

unknown values including the cross flow and axial flow

are solved at the present axial node, and the domain to

solve then moves to the next axial node. At this time,

the previous single processor algorithm can calculate

only one axial plane at once. The concept of the parallel

algorithm of the MATRA code is that the planes of the

same time step are simultaneously solved in the multiple

processors. The concept of this parallel algorithm was

shown in Fig. 1. In the figure, JX means the axial

location. It was assumed that the number of axial node

is 50 and the parallelized rank is 5, which means that the

5 processors are used to calculate. As shown in Fig. 2,

when the axial plane #1 is calculated on processor #1,

the axial planes #2 ~ #4 are calculated on processors #2

~ #4, simultaneously. In this example, the 4 axial planes

are solved during the time during which one axial plane

will be calculated in the previous SCHEME algorithm.

After each plane on each processor is solved, the next

planes are calculated in the same way. Even though each

outer iteration consists of 51 calculations in the single

computing algorithm, 13 calculations are needed to

execute one outer iteration in this parallel example. In

addition, the master processor collects the solved results

at each plane and broadcasts the merged results before

the calculation of the next time step is started.

The calculation flow of the parallel computing

compared to a single computing algorithm in section 2.1

is shown Fig. 2. At the first outer iteration, all of the

processors execute the same calculation with the

previous single computing algorithm to generate an

initial value at each plane. This initialization might

increase the calculation time. However, it can help to

decrease the total number of iterations in order to

converge. The axial planes are divided and calculated

on all processors from the second outer iteration.

3. Verification of Parallel Algorithm

Verification of the developed parallel algorithm of

the MATRA code was executed for three subchannel

models, which are a 5 by 5 bundle, 1/8 core, and whole

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 29-30, 2014

core of SMART reactor. The parameters used to

investigate the dimensions of the subchannel model are

summarized in Table I. The comparisons between the

single and the parallel computing result of the MATRA

code for the subchannel model in Table I were

conducted in view of the channel exit, bundle average,

and MDNBR channel. The results are summarized as

the relative and absolute difference term between the

single, and parallel computing and are shown in Table II.

It is shown that the results of two calculations are

identical. At this time, the convergence criteria applied

the same values. The axial distributions of CHFR are

depicted, as shown in Fig. 3. The MDNBR differences

between the single and the parallel computing are

evaluated as it was within +/- 0.005.

JX 1 2 … … … 12 13 JX 1 2 … … … 12 13

1 1 1 1 0 Node0 MASTER

2 2 2 2 1 Node1

3 3 3 3 2 Node2

4 4 4 4 3 Node3

5 1 5 1 4 Node4

6 2 6 2

7 3 7 3

8 4 8 4

… … … … … … … …

… … … … … … … …

… … … … … … … …

45 1 45 1

46 2 46 2

47 3 47 3

48 4 48 4

49 1 49 1

50 2 50 2

51 3 51 3

Outer #1 Outer #2

0 0

Fig. 1. The examples of the parallel algorithm (when number

of axial plane and the SIZE are 50 and 5, respectively)

DO NT=NTSRT, NDTP1

DO NN=ISTART, NTRIES

NN=1

JX = 1

DO JX=RANK, NDX+1, SIZE-1

RANK=0

JX = 1

YES NO

NO

YES

YES

NO

NO

YES

DO JX=1,NDXP1

START

RANK=0

MPI_INIT

BCAST Filename

DO JX=RANK, NDX+1, SIZE-1

RANK=0

NO

YES

MPI_ISEND

MPI_IRECV

RANK=0

MPI_FINALIZE

CALL RESULT(NT)

END
Fig. 2. Calculating flow of the parallel algorithm

Table I: Description of subchannel model for SMART

 5 X 5 1/8 Core Whole Core

Channel # 36 2,331 16,780

ROD # 25 2,119 15,048

Axial Node # 50 50 50

GAP # 60 4,536 33,252

Table II: Verification results of parallel computing

Enthalpy Temp. Density Equil. OSV TRUE Void Flow Mass Flux

% oC kg/m3 - - - - % %

MEAN -0.044 0.000 0.307 0.000 0.000 0.000 0.000 0.009 0.009

STD 0.002 0.000 0.027 0.000 0.000 0.000 0.000 0.050 0.050

MAX -0.040 0.000 0.342 0.000 0.000 0.000 0.000 0.083 0.083

MIN -0.047 0.000 0.255 -0.001 0.000 -0.001 -0.001 -0.082 -0.082

MEAN 0.007 0.016 -0.038 0.000 0.000 0.000 0.000 -0.002 -0.002

STD 0.037 0.082 0.266 0.001 0.000 0.000 0.000 0.109 0.109

MAX 0.138 0.300 0.526 0.002 0.000 0.000 0.000 0.335 0.335

MIN -0.068 -0.140 -0.994 -0.001 0.000 0.000 0.000 -0.344 -0.339

MEAN -0.002 -0.005 0.006 0.000 0.000 0.000 0.000 0.006 0.006

STD 0.033 0.076 0.217 0.000 0.000 0.000 0.000 0.135 0.135

MAX 0.114 0.250 0.373 0.002 0.000 0.000 0.000 0.566 0.565

MIN -0.063 -0.150 -0.774 -0.001 0.000 0.000 0.000 -0.265 -0.265

Delta-P Enthalpy Temp. Density Equil. OSV TRUE Void Flow MassFlux Velocity

% % oC kg/m3 - - - - % % %

MEAN -0.285 -0.006 -0.001 0.048 0.000 0.000 0.000 0.000 0.000 0.000 -0.019

STD 0.103 0.015 0.002 0.139 0.000 0.000 0.000 0.000 0.000 0.000 0.054

MAX 0.000 0.021 0.000 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.090

MIN -0.542 -0.045 -0.010 -0.300 -0.001 0.000 0.000 0.000 0.000 0.000 -0.150

MEAN 0.030 0.001 0.001 0.007 0.000 0.000 0.000 0.000 0.000 0.000 -0.001

STD 0.038 0.001 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.002

MAX 0.287 0.002 0.010 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MIN 0.000 0.000 0.000 -0.006 0.000 0.000 0.000 0.000 0.000 0.000 -0.005

MEAN 0.031 -0.001 -0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

STD 0.013 0.001 0.004 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.002

MAX 0.094 0.000 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.005

MIN 0.000 -0.002 -0.010 -0.008 0.000 0.000 0.000 0.000 0.000 0.000 -0.005

Delta-P Enthalpy Temp. Density Equil. OSV TRUE Void Flow MassFlux Velocity

% % oC kg/m3 - - - - % % %

MEAN -0.377 -0.011 -0.004 0.123 0.000 0.000 0.000 0.000 0.019 0.019 -0.019

STD 0.194 0.017 0.007 0.150 0.000 0.000 0.000 0.000 0.047 0.047 0.083

MAX 0.000 0.008 0.000 0.425 0.000 0.000 0.000 0.000 0.153 0.153 0.105

MIN -0.936 -0.049 -0.020 -0.084 -0.001 0.000 -0.001 -0.001 -0.082 -0.082 -0.220

MEAN 0.038 -0.026 -0.059 0.182 0.000 0.000 0.000 0.000 0.309 0.309 0.282

STD 0.072 0.020 0.043 0.151 0.000 0.000 0.000 0.000 0.203 0.203 0.209

MAX 0.092 0.000 0.000 0.464 0.000 0.001 0.000 0.000 0.708 0.708 0.682

MIN -0.195 -0.060 -0.120 0.000 -0.001 0.000 0.000 0.000 -0.056 -0.056 -0.133

MEAN -0.047 0.016 0.037 -0.108 0.000 0.000 0.000 0.000 -0.060 -0.061 -0.044

STD 0.060 0.014 0.032 0.096 0.000 0.000 0.000 0.000 0.054 0.054 0.056

MAX 0.000 0.036 0.080 0.000 0.001 0.000 0.000 0.000 0.044 0.044 0.078

MIN -0.285 0.000 0.000 -0.253 0.000 0.000 0.000 0.000 -0.168 -0.167 -0.159

Channel Exit Value

whole

5x5

1over8

whole

Bundle Averaged Value

MDNBR Channel Value

5x5

1over8

whole

5x5

1over8

0 250 500 750 1000 1250 1500 1750 2000

0

2

4

6

8

10

12

14

16

Parallel

 5x5

 1/8 Core

 Whole Core

C
H

F
R

Axial Location (mm)

Single

Fig. 3. The SCHEME algorithm of MATRA code solves the

unknowns according to the axial direction, step by step

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 29-30, 2014

4. Speedup of MATRA Parallel Version

A speedup of the MATRA parallel version was

evaluated. The speedup is one of the parameters in

multi-processing systems, which is defined as how much

a parallel computing is faster than single computing.

The required time to obtain the converged solution is

compared by increasing the number of processors and is

summarized in Table III. The NP means the number of

processors used to calculate and MASTER, MEAN,

MAX mean the spent time of a master processor, the

averaged-spent time of all processors, and the maximum

spent time out of all processors, respectively. It was

noted that the effects of parallel computing are not

shown when the problem dimension is small such as in

the 5 by 5 bundle case. The speedup and efficiency of

two cases, the 1/8 core and whole core case are shown

in Figs. 4 and 5, respectively. As shown in the figures,

the speedup and efficiency are decreased as the number

of processor is increased according to Amdahl’s Law.

Moreover, it was shown that those were decreased as

the problem size is increased because the cost of

communication among clusters is increased. However,

the performance of the MATRA code is greatly

improved in view of the computation time.

Table III: Speedup and efficiency of MATRA parallel

version (unit: sec)

NP 1 6 11 16 21 26

MASTER 0.914 0.588 0.792 1.521 1.545 1.501

MEAN 0.914 0.645 0.671 1.443 1.876 1.606

MAX 0.914 0.802 0.855 1.785 2.317 2.076

Speedup 1.000 1.140 1.069 0.512 0.394 0.440

Efficiency 1.000 0.190 0.097 0.032 0.019 0.017

NP 1 6 11 16 21 26

MASTER 394.873 58.739 40.489 32.176 28.213 26.746

MEAN 394.873 57.912 39.610 31.215 27.566 25.284

MAX 394.873 58.739 40.489 32.176 28.213 26.746

Speedup 1.000 6.723 9.753 12.272 13.996 14.764

Efficiency 1.000 1.120 0.887 0.767 0.666 0.568

NP 1 6 11 16 21 26

MASTER 1934.319 499.486 359.990 268.785 257.287 232.862

MEAN 1934.319 493.613 362.154 280.076 267.774 245.164

MAX 1934.319 499.486 362.628 282.304 271.874 250.208

Speedup 1.000 3.873 5.334 6.852 7.115 7.731

Efficiency 1.000 0.645 0.485 0.428 0.339 0.297

5x5

1/8 Core

Whole Core

0 4 8 12 16 20 24 28

0

4

8

12

16

20

24

28

S
p

e
e

d
u

p

Cluster #

 1/8 Core

 Whole Core

Fig. 4. Speedup of MATRA parallel version

0 4 8 12 16 20 24 28

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
ff
ic

ie
n

c
y

Cluster #

 1/8 Core

 Whole Core

Fig. 5. Efficiency of MATRA parallel version

5. Conclusion

The parallel algorithm was implemented to the

subchannel code MATRA using the MPI. The

performance of the parallel algorithm was verified by

comparing the results with those from the MATRA with

the single processor. It is also noticed that the

performance of the MATRA code was greatly improved

by implementing the parallel algorithm for the 1/8 core

and whole core problems.

ACKNOWLEGEMENTS

This work was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea

government(MSIP) (No. 2012M2A8A4026261)

REFERENCES

[1] S.J. Kim, at al., Development and Assessment of Core T/H

Code’s Real Time Model for SMART Simulator, KAERI/TR-

4904/2013, Korea, Jan., 2013.

[2] R. K. Salko, et al., Suggestions for COBRA-TF

Parallelization and Optimization, CASL Technical Report:

CASL-U-2013-0003-000, December, 2012.

[3] P. S. Pacheco, Parallel Programming with MPI, Morgan

Kaufmann, 1996.

