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1. Introduction 
 

Since the size and complexity of nuclear power plants 
(NPPs) are both increasing, the understanding of system 
problems and mitigation poses challenges to the 
operators [1]. In order to enhance the safety of NPPs, 
reducing operation errors committed by human 
operators is essential, and various operator support 
systems (OSSs) have been developed. Many researchers 
have made a huge effort to study about fault diagnosis 
systems (FDSs) which help operators to judge what kind 
of abnormalities is occurred. However, there seems to 
need further researches about operation validation 
systems (OVSs) which help operators to properly and 
effectively mitigate the abnormalities of NPPs. 

In this study, a new OVS based on support vector 
regression (SVR) algorithm is proposed. SVR is one of 
the branches of support vector machine (SVM) 
applications. SVM is a machine-learning algorithm that 
has been successfully used in pattern recognition for 
cluster analysis [2]. It is widely used for various 
regression analysis fields because of its evident 
theoretical background, high performance in finding 
global optimum, and high performance in real 
application as well as artificial neural network (ANN), 
which is already widely used in various fields. With 
these advantages, it is expected that the new OVS based 
on SVR algorithm may provide a chance to conduct not 
only qualitative but also quantitative analysis about 
results of operators’ actions. 

  The data for training the SVR algorithm was 
acquired by using MAAP5 (modular accident analysis 
program) code, which is world-widely used and is 
provisionally proved as reliable simulation code. Data 
was acquired based on APR1400 (advanced power 
reactor) reactor parameters. With the advantages of 
SVR and reliable data, the new OVS will be validated 
with enhanced performance in real NPP applications. 
Through the validation results, it is expected that human 
errors can be significantly reduced in implementation 
phase.   

 
2. Brief Introduction of SVR Algorithm 

 
2.1 Historic Background of Support Vector Machine 

 
Support vector machine (SVM) is one of the 

optimization algorithms which are used for selecting 

best model in statistical measures, suggested by Vapnik 
in 1995 [3].  The structure of SVM is based on the 
structural risk minimization (SRM) principle, which has 
been shown to be superior to pre-developed empirical 
risk minimization (ERM) principle, employed by 
conventional neural networks [4]. Although SVM has 
shorter history compared to other algorithm such as 
neural networks, SVM algorithm gains popularity in 
various fields of research because of its underlying 
attractive features. For example, since SVM is based on 
evident mathematical background, analysis of the result 
from SVM algorithm is relatively easier than the result 
from other algorithms such as neural networks. In 
addition, SVM shows high performance in real-world 
applications as well as neural networks, which used for 
a long time in similar fields. 

SVM algorithm was originally designated for solving 
classification problems, but it can be also extended to 
the domain of regression problems [5]. In order to 
classify these two applications, they are called support 
vector classification (SVC) and support vector 
regression (SVR) respectively. SVC and SVR shares 
same basic principles, but there are some differences in 
detail. In this study, SVR was used for regression 
analysis and its feature will be described in next section 
briefly. 

 
2.2 The Basic Idea of Support Vector Regression 
 

Relation between regression function ( )f x  and 

training data set 1 1{( , ), ( , )}n nx y x y  can be 
represented in the form,  

 
( )     with   , ,  Nf x w x b w x R b R= ⋅ + ∈ ∈                     (1) 

1 1where {( , ), ( , )} N
n nx y x y R R⊂ ×

                    (2) 
 
By the principle of SRM, generalization performance 

of SVR is related to the ‘flatness’ of regression function, 
and this ‘flatness’ is obtained by minimizing w  in Eq. 
(1) (i.e. minimizing 2|| ||w ).  

The regression process can be represented in the form 
of optimization problem, by adding some variables such 
as C (adjusting factor that adjusts trade-off between 
flatness and training error), ε (size of ε-tube), and slack 
variables *,ξ ξ (error allowance in training process). 
Equations of optimization problem is represented as, 
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  If the ε-loss function is ε-insensitive, SVR does not 

calculate training error of data set which is located 
inside of ε-tube, and as a result, SVR tends to cover the 
data as much as possible. In conclusion, SVR is trained 
to cover data as much as possible, and minimize 2|| ||w  
[6]. 

Minimization problem in Eq. (3) is called the primal 
objective function. By introducing a dual set of 
variables, Lagrange function is constructed from the 
primal objective function (for details see e.g. [7], [8]). 
Eq. (4) shows the Lagrange function constructed from 
Eq. (3) and its constraints. 
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L is the Lagrangian and * *, , ,i i i iα α λ λ are Lagrange 

multipliers. Equation (5) represents the positivity 
constraints for Lagrange multipliers. 

 
* *, , , 0i i i iα α λ λ ≥                                                     (5) 

 
Partial derivatives of L respect to *, , ,i iw b ξ ξ yields 

these three equations respectively. 
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Note that (*)

iα means iα and *
iα . By combining Eq. 

(5) and (6), dual optimization problem is obtained. 
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In deriving Eq. (7), dual variables *,i iλ λ are 
cancelled by the Eq. (6) which can be represented 
as (*) (*)

i iCλ α= − .  First line of Eq. (6) can be 
rewritten as, 
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This is called support vector machines regression 

expansion, and this means that w can be completely 
described as a linear combination of the training 
patterns ix . 

The Karush-Kuhn-Tucker (KKT) conditions [9, 10] 
are the basics for the Lagrangian solution. These 
conditions state that at the solution point, the product of 
dual variables and constraints has to vanish [11]. 
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From these conditions, two kinds of conclusions can 

be made. First one is, only sample sets ),( ii yx with 

corresponding Ci =(*)α are not covered by ε-tube. And 

second one is multiplication of iα and *
iα should be 

always zero. These conclusions can be represented as, 
 

0  and  0    if  i i i iy w x b Cε ξ α− + ⋅ + ≥ = ≤  

0                         if  0i i iy w x bε α− + ⋅ + ≤ >      (11) 
 

Also, by the Eq. 9, if any sample set is covered by ε-
tube, corresponding *,i iα α has to be zero. The training 
sample sets that have corresponding non-zero 

iα or *
iα are called as support vectors. 

 

 
Fig. 1. Linear SVR with Vapnik’s ε-insensitive loss function 
[12]. 

 
Computing of SVR algorithm will not described in 

this paper. For details about this subject, refer [13]. 
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Non-linear regression can be also conducted with 

SVR algorithm by using kernel trick. This can be 
achieved by simple mapping of original feature space 
ℜ into some feature space ℑ  with mapping 
function Ψ , and applying standard linear SVR 
algorithm. 

For example, non-linear regression of 2-dimensional 
original feature space ( , )x y can be achieved by 
mapping it into 3-dimensional feature space by utilizing 
mapping functionΨ . 

 
2 3:Ψ →   

2 2( , ) ( , 2 , )x y x xy yΨ =                                 (12) 
 
When kernel trick is applied, SVM optimization 

problem and SVR expansion both change. If the 
mapping function denoted as K , instead ofΨ , SVM 
optimization problem can be represented as,  
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And similarly, SVR expansion can be represented as, 
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Fig. 2. Non-linear SVR with Vapnik’s ε-insensitive loss 
function [14]. 

 
In non-linear regression, the optimization problem 

finds the ‘flattest’ regression function in new feature 
space, not in original feature space. 

In normal, several kinds of mapping functions are 
used frequently. Table I lists frequently used mapping 
functions and own required specifications. 

 

Table I: Frequently used mapping functions 

Kernel function Specifications 
Linear - 

Polynomial Degree of polynomial 
RBF Sigma (width) 

Exponential-RBF Sigma (width) 
Spline - 

B-spline Degree of B-spline 
Anovaspline Max. order of terms 

Fourier Degree of Fourier series 
Sigmoid Scale, offset 

 
3. Application of SVR Algorithm 

 
3.1 Training data acquisition: MAAP5 code 
 

In order to develop the new OVS, it is necessary to 
collect data sets that indicate how plant status variables 
are changed when operators control something such as 
pumps and valves. These data sets are used for training 
SVR algorithm, and properly-trained SVR algorithm 
should have the capability of prediction of plant status 
variables change under various conditions. Since the 
quality of training data determines the quality of trained 
SVR algorithm, acquisition of reliable training data is 
necessary and very important.    

In this study, training data was acquired by using 
MAAP5 code developed by Fauske associates, which is 
world widely used for transient analysis and is 
provisionally proved as reliable simulation code. Data 
was acquired based on APR1400 reactor parameters. 

In the process of data acquisition, there were some 
assumptions and considerations. First was the kind of 
transient scenarios. In this study, for simplicity, only 
LOCA scenario is considered. Instead, 3 break sizes 
(0.01 ft radius, 0.1 ft radius, and 0.1 ft radius) and 8 
break locations (hot leg, cold leg, S/G hot tube, S/G 
cold tube) were assumed (total 12 kinds of LOCA 
scenarios). Table II shows the list of assumed transient 
scenarios. 

 
Table II: Assumed transient scenarios 

 
Second consideration was the kind of control modes. 

Considered control modes were selected by reviewing 
MAAP5 code manual, with the criteria of accessibility 
to the code. Before data acquisition, total 23 kinds of 
control modes were considered, but meaningful data 
was obtained only from several control modes (will be 
described in detail in later part). Table III lists 23 
considered control modes.  

Transient type Break size ( 2ft ) Break location 

LOCA 
0.02  
0.2 
1 

Hot leg, Cold leg,  
S/G hot tube,  
S/G cold tube 
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Table III: Considered 23 control modes 

HPI switch MFWP Cavity injection 
pump 

LPI switch RX vent switch Primary system 
makeup flow 

Accum. block 
valve UHI accum. Letdown switch 

MCP switch Charging pump 
switch PRHR valve 

Recirculation 
switch S/G relief valve S/G MSIV 

PZR spray S/G safety valve Turbine stop valve 

PZR heater RHR spray valve Turbine bypass 
valve 

Motor-driven 
AFWP RWST valve  

 
The last consideration was the kind of plant status 

variables. Considered plant status variables were 
selected by reviewing procedures for LOCA transient 
scenario and reviewing MAAP5 code manual, with the 
criteria of relations with safety and accessibility to the 
code. Table IV lists plant status variables that 
considered. 

 
Table IV: Considered plant status variables 

S/G 1 pressure PRZ level Hot leg temp.     
(4 nodes) 

S/G 1 level PRZ valve water 
flow rate 

Cold leg temp.    
(4 nodes) 

S/G 2 pressure PRZ valve gas 
flow rate 

Avg. RCS 
pressure 

S/G 2 level Accum. pressure Avg. RCS void 
fraction 

PRZ pressure Loop 1 flow rate RWST level 

PRZ water temp. Loop 2 flow rate Max. core temp. 

PRZ gas temp. Boric acid mass RV water level 

 
Input files for MAAP5 code were constructed with 

these 3 kinds of considerations. In this process, control 
actions that automatically conducted were normally 
operated. Detailed training data specifications are 
introduced in table V. 

 
Table V: Training data specifications 

1. LOCA occurs at 0 min.t =  

2. No manual actions are conducted before 30 min.t =  

3. At 30 min.t = , operator actuates one of the selected 
control modes. 

4. At 90 min.t = , simulation ends. 

5. Data was collected for every 36 seconds                        

3.2 Data smoothing method: Savitzky-Golay filter 
 
Applying data smoothing will be helpful to enhance 

the performance of regression analysis. There are 
various data smoothing methodologies, and in this study, 
Savitzky-Golay filter was applied for data smoothing. 
Savitzky-Golay filter is one kind of digital filters which 
developed by A. Savitzky and M. J. E. Golay in 1964 
[15]. This filter was originally developed for the 
analytic chemistry. 

With determined span N  and degree x , Savitzky-
Golay filter starts to approximate N  sequential data 
with polynomial of degree x  (i.e. making local 
polynomial), by the method of least squares. For 
example, if Savitzky-Golay filter with span 10 and 
degree 2 is applied to the data set which has 100 data 
points, there would be 90 local polynomials of degree 2. 
After obtaining all local polynomials, next step is just 
averaging these local polynomials to get new data points 
(if the span is N , one original data point would be 
included in N  local polynomials). Fig. 3 and Fig. 4 
show one of the training data before filtering and after 
filtering respectively. 

Mathematical representation of Savitzky-Golay filter 
will not be covered in this paper. For details about this 
subject, refer [15]. 

 

 
Fig. 3. Training data before Savitzky-Golay filtering 

 

 
Fig. 4. Training data after Savitzky-Golay filtering (span=10, 
degree=2, # of data points=100) 
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 3.3 Training and Optimization 

 
Even if operator actuates the same control mode, its 

result could be different according to the state of NPP at 
the moment of control. Therefore, to predict the change 
of plant status variables more accurately in transient 
condition, obtaining training data under transient 
condition (not in normal state) is necessary.  

By using MAAP5 code, two kinds of LOCA transient 
data were acquired. First one is transient data without 
any manual control and second one is transient data with 
one manual control. By subtracting these two results, 
transition of plant status variables due to corresponding 
control action can be obtained. For every selected 
control modes, this process was applied, and SVR 
algorithm was trained by using these data. 

Among 23 control modes, only several kinds of 
control modes show significant change of plant status 
variables. This means that except these controls, the 
other controls did not affect significantly to safety-
related plant status variables. Therefore, the control 
modes that did not affect significantly were excluded 
from optimization and training. 

To optimize, various kernel functions and various 
values for parameters such as C , degree of polynomial 
(in case of the kernel function is polynomial) were 
applied, and set of kernel function and parameter values 
that shows minimum error was selected. Table VI lists 
the applied kernel functions and parameter values to 
optimization process, and Fig. 5 shows one of the 
optimized training results of SVR algorithm.    

 
Table VI: Applied kernel functions and parameter values to 

optimization process 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Training result of SVR algorithm (kernel function: 
polynomial, deg 6, loss function: ε-insensitive, C=10 E10, 
ε=0.03, data normalized, data smoothen by Savitzky-Golay 
filter, span 10, deg 2)  
 

4. Conclusions 
 
In this paper, new OVS using SVR algorithm is 

proposed. Under simplified cases, SVR algorithm is 
trained to be capable of plant status variables prediction.  
After optimization and training for each data set, all 

trained data are supposed to be verified. To verify, it is 
necessary to check whether the trained SVR algorithm 
predicts the change of plant status variables accurately 
when operators actuate some control modes (the 
condition should not be same with the training data). If 
the output of trained SVR algorithm and real data 
(obtained from reliable source) show an error in 
acceptable range, trained SVR algorithm could be 
verified. If the result is successfully verified, it is 
expected that development of OVS using SVR 
algorithm is not only possible but also quite reliable. 
After verification, all trained data will be integrated, 

and the prototype of new OVS would be proposed. 
Prototype will be constructed by using MATLAB GUI.  
For simplification, in optimization process, ε  value 

was fixed and C  value varies only 11 kinds. Under this 
condition of optimization, some data sets show poor 
regression result. For more perfect optimization, since 
determining appropriate parameter values is trial-and-
error process, more number of cases should be 
considered. In some researches, this kind of problem 
was solved by applying another algorithm such as 
genetic algorithm for searching appropriate parameter 
values [16, 17]. If these kinds of methodologies applied 
for selecting appropriate parameter values, overall 
regression quality is expected to be enhanced.  
Another problem of this research is that there are only 

small numbers of control modes that have meaningful 
data. To collect the data for other control modes which 
were not originally coded in MAAP5 code, it is 
necessary to construct custom codes for every control 
modes. For simplicity, this paper did not cover un-
coded control modes, but in real OVS application, OVS 
should has capability to cover every single valves and 
pumps in nuclear power plants. Since there are so many 

Kernel functions 

Linear 
Polynomial (deg 2 to 6) 
RBF (sigma 1 to 3) 
Exponential RBF (sigma 1 to 3) 
Spline 
B-Spline (deg 1 to 3) 
Anovaspline (Max. term 1 to 5) 

Loss function ε-insensitive (fixed) 

C  10n (n=-6,-4,-2,0,2,4,6,8,10,12),∞  

ε  0.03 (fixed) 
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components in nuclear power plants, this work would 
requires a lot of time and labor. Thus, finding of proper 
common ground between simplification and 
performance should be achieved by further studies. 
Main purpose of this study is to check that operation 

validation system could be developed by using support 
vector regression algorithm. Currently, this study 
involves many problems described above, but by 
conducting further studies, mentioned problems are 
expected to be solved.     
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