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1. Introduction 

 
Monte Carlo (MC) method is a stochastic approach 

that the results are obtained from the estimation of each 

particle transport simulation. MC method can directly 

simulate the particle simulation without modification of 

the Boltzmann transport equation; therefore, the 

accuracy of simulation results is superior to those of 

deterministic methods. However, it is well known that 

the calculation efficiency with MC method can be 

considerably lower for the deep penetration or large 

geometrical problems to reduce the stochastic error. In 

order to increase the simulation efficiency, variance 

reduction techniques have been introduced for the 

problems. The variance reduction method can be 

classified to three technical categories that are source, 

collision, and transport biasing [1-3]. All of the variance 

reduction techniques require specific parameters to 

control the transport probability. One of well-known 

methods to determine the optimized transport 

probability is called as the Consistent Adjoint Driven 

Importance Sampling (CADIS) method [4-5]. The 

CADIS method uses adjoint function to reduce the error 

of the response. This method can give high variance 

reduction efficiency on the single response in any 

problem. However, the CADIS method cannot properly 

reduce individual relative error for the cases, which 

have more than two responses. In this study, a multi-

response CADIS method was derived by considering 

each position of the responses. Using the multi-response 

CADIS method, a radiation transport problem was 

estimated by applying it into the source angular biasing. 

The results were compared with those of the CADIS 

approach and the analog MC method.  

 

2. Methods and Results 

 

In stochastic theory, expected value of g(x) is 

expressed to Eq. (1). 

    ( ) ( )                                             ( ) 

where  ( )  is probability density function (pdf) 

satisfying   ( )    and   ( )     conditions. 

Also, the variance of G is obtained by using Eq. (2). 
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The variance reduction scheme is that the f(x) is 

changed to  ̂( ) for reducing the variance of G. As the 

results, the average and variance with  ̂( ) are given to 

Eqs. (3) and (4), respectively. 
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To get the minimum variance for G, first term of 

RHS in Eq. (4) should be minimized. Therefore, 

determination of  ̂( ) must be a key issue for the use of 

the efficient variance reduction. In Section 2.1, the 

introduction and the limitation for CADIS method were 

described. A multi-response CADIS method, which is 

to overcome the limitation of CADIS method, was 

proposed and derived in Section 2.2. Finally, for the 

verification of the multi-response CADIS method, a 

sample radiation transport problem was calculated with 

the proposed and CADIS methods in section 2.3. 

 

2.1 Review of CADIS Method  

 

In particle transport problems, response called as the 

tally results is obtained by Eq. (5). 
 

       ( ⃗  ̂  )  ( ⃗  ̂  )  ⃗  ̂   

              ( )  ( )                                       (5) 

where   ( )  is particle flux at P phase-space and 

  ( ) is object functions to get a response at P. In the 

time independent transport equation, transport term 

excepting the source term can be express by Eq. (6) 

using transport operator H. 

 ̂                ̂   ( ⃗  
     ̂   )   

                                            ( ) 

Then, the transport equation is simply expressed as 

given in Eq. (7). 

                                     (7)            

 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 29-30, 2014 

 

where   is source density function. Also, the adjoint 

transport equation can be express by Eq. (8) [7]. 

 ̂         
         ̂   ( ⃗  

     ̂   )   
    

                                     ( ) 

where H
+
 is the adjoint function of H,    is the adjoint 

function of  , and    is the adjoint function of q. It is 

noted that Eq. (8) cannot be a self-adjoint function of 

Eq. (7) due to the particle transport relationship 

between forward and adjoint functions [7]. Therefore, 

those equations should be expressed as the following 

equation:   

                  

or  

                                     ( ) 

where < > is an integration operator for all independent 

variables. The physical meaning of the adjoint flux 

(   )  is the expected contribution to the specific 

response, and adjoint source (  ) is the object function 

(  ). From the relationship given in Eq. (9), the Eq. (5) 

can be expressed as two expressions:  

    ( )  ( )                       (10-a) 

or  

     ( ) ( )                       (10-b) 

Then, with Eq. (10), the variance of the source 

probability density function for the source biasing, 

which is one of the variance reduction methods, can be 

rewritten to Eq. (11). 

   ( )   [
   

( )  ( )

 ̂ ( )
]  ̂( )           (  ) 

The response R is the average value, and thus the 

value is fixed to a coefficient. To obtain the minimum 

variance of Eq. (11), the first term of RHS in Eq. (11) 

should be minimized by choosing modified pdf ( ̂).  ̂, 

which is the modified pdf for the variance reduction, is 

decide by importance sampling with Eq. (12) [8].  

 ̂  
  ( ) ( )

   ( ) ( )  
 

  ( ) ( )

 
           (  ) 

In the biasing theory for using the variance reduction 

technique, the particle weight must be conserved as 

shown in Eq. (13). For example, in splitting event, a 

particle weight must be decreased as increasing the 

number of particles that is changed by the cell 

importance.  

 ( ) ̂( )    ( ) ( )                  (  ) 

where  ( ) and   ( ) are biased and unbiased particle 

weights, respectively. Finally, the statistical weight of 

the source particle for the variance reduction is decided 

by substituting Eq. (12) into (13).  

 ( )  
   ( ) ( )  

  ( )
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         (  ) 

If the R and   ( )  are obtained as using 

deterministic methods or the other approaches, the 

variance of Monte Carlo simulation can be optimized 

by this theory. 

 

2.2 Proposal of Multi-response CADIS Method   

 

As shown in Eqs. (10-14), the CADIS method does 

not consider the position of the response because the 

total response is introduced in Eq. (5). However, for 

general particle transport problems, responses having 

various positions are often required in a single MC 

simulation. For the cases, therefore, the total relative 

error can be efficiently reduced with CADIS method. 

However, it can fail to reduce the individual relative 

error at each response position. In this study, the 

relative error reduction method (defined as Multi-

response CADIS method) was proposed with 

considering the positions of the response. First, the Ri, 

which is the response in i
th

 discrete region, is defined as 

the following equation. 

       ∫
√   ( ( ))

 ( )
  

 

  

                          (  ) 

where   is the position of the response. The purpose of 

the proposed method is that relative errors of the 

responses in the discrete region i are minimized, equally. 

Therefore, if the relative errors in discrete region i are 

equal to each other, the goal can be successfully 

achieved.  Variance is a method to indicate the degree 

of differences among the values; hence, the relative 

errors, Rerr,i, can be minimized by the following 

equation: 

   ((   [    ( ̂( ))]))                                                 

      (
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       )
 

)       (  ) 

where    ( ( ))  is a function to fine a variable x 

which gives a minimum value of f(x) and N is total 

number of response. The second term of RHS in Eq. (16) 

is a constant because it is an average value. Therefore, 

Eq. (16) can be derived to Eq. (17).  
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Substituting Eqs. (15) and (11) into Eq. (17), the 

 (   (    ( ̂( )))) is expressed to Eq. (18). 
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or  
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The value  ̂( ) to give a minimum value of Rerr can 

be calculated by using a Lagrange multiplier   as used 

in the previous study [8]. 

 ( ̂( ))   
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By partial differentiating the Eq. (19) with 
 

  ̂( )
 , and 

then the    (    ) has a minimum value at 
  ( ̂( ))

  ̂( )
  . 

The minimized condition is given in Eq. (20). 
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 ̂(P) is the pdf, and thus   ̂( )   should be 1. And, 

 ( ) and    ( ) are positive values. Using the 

properties, the function to fine the 

   (   [    ( ̂( ))]) can be derived to Eq. (21). 
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Also, the particle weights of the plural responses 

were calculated with Eq. (22) which is derived with Eq. 

(21) into Eq. (13). 
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2.3 Verification of Multi-response CADIS Method 

 

For the verification of multi-response CADIS method, 

a simple shielding problem was assumed as shown Fig. 

1. An isotropic point source (photon) having 1 MeV 

energy is located at the center of a room. The room 

inside is cubical shape, and each side has 100 cm length. 

The wall of the room is 50 cm thickness ordinary 

concrete (density=2.3g/cc). To get the response, the 

mesh tally (30 cm x 30cm x 10 cm unit length) is 

located at the right side of the room. This study is to 

confirm and verify the multi-response CADIS method, 

and thus the adjoint fluxes and responses were 

calculated by MCNPX code. Using the adjoint fluxes 

and responses, the radiation transport calculations were 

performed with proposed method and CADIS approach. 

Also, the results were compared with that of analog MC 

calculation.  

Figures 2 - 4 show the results of the relative errors 

with 10
5
, 10

6
, and 10

7
 particle transport histories, 

respectively. Figures 5 - 7 are the results of the fluxes. 

The results show that the relative errors using both 

CADIS and multi-response CADIS methods were 

reduced than those with analog MC calculation. The 

CADIS method gives best accuracy at center area for all 

cases; but it gives relatively lower accuracy in the other 

tally regions than those with proposed method.  On the 

contrary, the multi-response CADIS method generally 

gives good accuracies in all tally regions. Figure 8 is the 

number of relative errors categorized by relative error 

bins. The results show that the multi-response CADIS 

method proposed in this study are successfully reduce 

the relative errors in all regions than the CADIS method. 
 

 
Fig. 1. Cross-sectional Drawing (Left) and Side View (Right) 

of Shielding Problem 
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Fig. 2. Computed Relative Errors using No Biasing (Left), CADIS (Middle), and Multi-response CADIS (Right) Method for 105 

Histories 

 

 

Fig. 3. Computed Relative Errors using Analog (Left), CADIS (Middle), and Multi-response CADIS (Right) Method for 106 

Histories 

 

 

Fig. 4. Computed Relative Errors using Analog (Left), CADIS (Middle), and Multi-response CADIS (Right) Method for 107 

Histories 
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Fig. 5 Flux distribution using Analog (Left), CADIS (Middle), and Multi-response CADIS (Right) Method for 105 Histories 

 

Fig. 6 Flux distribution using Analog (Left), CADIS (Middle), and Multi-response CADIS (Right) Methods for 106 Histories 

 

Fig. 7 Flux distribution using Analog (Left), CADIS (Middle), and Multi-response CADIS (Right) Methods for 107 Histories 

 
(a) 105 Histories                                           (b) 106 Histories                                            (c) 107 Histories 

Fig. 8. Number of Relative Errors in Each Error Boundary for Analog MC, CADIS, and Multi-Response CADIS Method 
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3. Conclusions 

 

In this study, a multi-response CADIS method was 

proposed for minimizing relative errors in various tally 

regions. To reduce all relative errors for various 

responses, a weight decision equation was derived. For 

the verification of the proposed method, a shielding 

problem was set and the MC simulations were pursued. 

The results with the proposed method were compared 

with those estimated by CADIS and analog MC 

methods. The analysis shows that the relative error of 

each tally region can be successfully and efficiently 

reduced for overall regions than the other methods. It 

can be utilized for accurate calculation of various 

radiation transport problems, as well as to save the 

calculation time. Therefore, it is expected that the 

proposed method can contribute the improvement of 

expandability in Monte Carlo simulation. 
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