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1. Introduction 

 
The contemporary reactor core analysis for the Light 

Water Reactor (LWR) heavily replies on the fuel 

assembly homogenization based on the nodal 

equivalence theory, which is the idea of preserving the 

equivalency between an original heterogeneous 

assembly and a homogenized assembly in terms of 

reaction rates and node interface currents [1]. In the 

nodal equivalence theory, the single assembly 

homogenization is most widely used to obtain 

homogenized parameters for the calculational efficiency. 

However, because reflective boundary conditions are 

used for the single assembly calculation, the accuracy of 

whole core analysis deteriorates noticeably when two 

very different assemblies are neighboring each other and 

the node interface current is not close to zero [2]. In this 

study, we propose a new and unique approach to reduce 

the error which comes from the incomplete assembly 

homogenization in the lattice calculation. 

 

2. Functionalized Discontinuity Factors 

 

Because the conventional assembly discontinuity 

factors (ADFs) are based on the net-zero current 

boundary condition, they may be quite different from 

the reference Discontinuity Factors (DFs) which are 

obtained by using the exact boundary conditions. 

However, if one can generate the DFs as a function of 

boundary condition of a fuel assembly in the lattice 

calculation and the DF can be updated by using the 

actual current information during the iterative core 

calculation, it is expected that more accurate DFs will 

determined and the resulting nodal equivalence for the 

homogenized fuel assemblies will improved, leading to 

a more accurate core analysis. This conjecture is based 

on the general perception that the interface neutron 

current from a core calculation should be ‘closer to the 

reference’ than the ‘zero net-current’ conditions used 

for determination of the conventional ADFs. If the 

perception is true, update of DFs by using the ‘more 

accurate’ interface current resulting from the whole core 

calculation will provide correspondingly ‘improved 

DFs’ to be used in the next iterative core calculation and 

the accuracy of the resulting core calculation could be 

improved again and the DF updated follows. In this way, 

the non-linear DF update can be continued until 

convergence. In a sense, the associated algorithm is 

based on a ‘virtuous cycle’ between the DFs and 

interface currents. To see the feasibility of the 

functionalized discontinuity factors (FDFs), one-

dimensional test problems are considered in the work. 

 

2.1. Functionalization of discontinuity factor 

 

In this study, we tried to functionalize DFs of a 

surface by using the current-to-flux ratio (CFR) on the 

same surface only because the surface DFs are mainly 

dependent on the surface boundary condition for the 

same surface. Of course, DF may also depend on the 

boundary conditions on the other surfaces of the fuel 

assembly. However, in this work, the FDF is assumed to 

depend only on the CFR of the same surface for 

practical and efficient applications of the FDF concept. 

Figure 1 shows the schematic illustration of the FDF in 

a 1-D fuel assembly geometry. 

 

 
 

Fig. 1. The FDF of the test problem single assembly 

 

The FDFs are expressed as a function of node 

interface CFR. For the functionalization of FDFs, either 

linear or quadratic functions are used in this study: 
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where L
gDF  is the g-th group DFs on the left surface of 

a homogenized assembly, gADF is the conventional g-

th group assembly discontinuity factor, na  are 

coefficients, L
g  is the flux on the left surface of 

heterogeneous assembly, and L
gJ  is the current on the 

left surface of heterogeneous assembly. The DFs on the 

right surface is also functionalized in the same way. 

In order to determine the coefficients na , the 1-D 

lattice problem in Fig. 1 is solved by using several CFR 

boundary conditions on each surface. Because the CFR 

is a function of albedo in diffusion approximation, a set 

of albedo boundary condition was used for the set of 

CFR boundary conditions. The CFR boundary condition 

can be either positive or negative in actual problems. 

Therefore, 3 CFR (+, 0, -) boundary conditions are used 
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on each surface in this work, and 1-D lattice problem is 

solved 3 times with different boundary conditions, 

instead of the single fuel assembly analysis in the 

conventional method. It is worthwhile to note that, in 

the case of symmetric fuel assembly, the FDF is 

identical for all surfaces if a single set of CFR values is 

used for the FDF determination. As a result, the number 

of fuel assembly analysis is only increased from 1 to 3 

even in a 2-D fuel assembly problem. In addition to the 

conventional zero CFR, 2 CFRs are additionally used 

for determination of the FDF. Thus, in the case of the 

linear FDF, the 2 coefficients should be determined in a 

least square sense. 

Unlike the symmetric fuel assembly analysis, in the 

case of heterogeneous baffle-reflector homogenization, 

a set of current boundary conditions are used instead of 

albedo boundary condition to determine the 

homogenized parameters and the coefficients for FDF. 

As shown in Fig. 2, just like in the conventional baffle-

reflector homogenization, a small spectral fuel-reflector 

model is analyzed. The heterogeneous current at the 

interface from the spectral geometry is used as reference 

value. Similarly to the fuel assembly calculation, 3 

current (+ε, reference, - ε) boundary conditions are used 

on the reflector surface to determine the FDF 

coefficients. Of course, one of the current information is 

from the fuel-reflector spectral analysis and the other 

two conditions are determined appropriately. For the 

reflector nodes, both linear and quadratic FDFs are 

applied, as well. 

 

 
 

Fig. 2. The heterogeneous reflector FDF evaluation 

 

2.2. Whole-core calculation with FDFs 

 

In the whole-core analysis based on the well-

developed inner-outer nested iterations, the FDFs are 

updated by using the node interface CFR during 

iteration (FDF iteration). The lattice or fuel assembly 

calculations with different CFR boundary conditions 

provides different homogenized group constants for the 

fuel assembly. However, in the work, the other 

homogenized parameters, such as diffusion coefficients 

and cross-sections are fixed to the conventional flux-

weighted constants (FWCs) determined with zero CFR 

boundary condition [3].  

Fig. 3 shows the iterative solution scheme including 

an FDF update iteration. In Fig. 3, t is index of “outer 

iteration” and u is index of “FDF iteration”, the update 

procedure for DFs in Eqs. (1) and (2). During above 

iterations, different error criteria was used to check the 

convergence of outer iteration and FDF iteration. 
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t = 1

Are keff and fission source distribution 
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STOP
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Fig. 3. Flowchart of the FDF iterative solution scheme 

 

3. Results and Discussion 

 

Two one-dimensional slab geometry problems were 

considered to test the above-mentioned FDF method. 

The reflective boundary condition is imposed on the left 

hand side and the right hand side is subject to the 

vacuum boundary condition. 

 

3.1. UO2 fuel loaded 1-D core problem 

 

As shown in Fig. 4, in the first test problem, there are 

10 fuel assemblies in the core region and two types of 

UO2 fuels are loaded; Fuel 1 and Fuel 2 with slightly 

different enrichment. The length of a fuel assembly is 

22.8 cm and control rods are inserted into 5 fuel 

assemblies in the core. The fuel assembly is comprised 
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of fuel, coolant, and water. It is assumed that 2-group 

cross sections are provided for each material in the test 

problem. 

 

 
 

Fig. 4. Configuration of test problem I 

 

The main objective of this study is to see the 

feasibility of the FDF method. For the analysis of the 

fuel assembly and core, a 1-D diffusion finite difference 

method (FDM) code was developed for both whole core 

and lattice calculations. A very fine mesh (0.01 cm) was 

used in the analysis and the error criteria between FDF 

iteration steps were 710keff  for the multiplication 

factor and 610source  for the source distribution.  

 

First, each fuel assembly and the baffle-reflector were 

homogenized with CFR=0 condition and 2 additional 

analyses were performed to determine the FDF for each 

type of fuel assemblies and baffle-reflector. Figure 5 

shows the resulting FDFs of an assembly type in the 

problem. From Fig. 5, it is clear that the FDF is rather 

non-linear function of the CFR boundary condition for 

both thermal and fast groups. Also, Fig. 5 shows that the 

thermal FDFs are closer to unity than fast FDFs, as 

expected. 

 

 
Fig. 5. The DF as a function of current-to-flux ratio 

 

During FDF iterations, the FDFs were updated 

whenever outer iteration satisfies the error criteria which 

is 10 times looser than that of FDF iteration. 

Consequently, the FDF update is triggered only when 

the fission source is roughly converged.   

Table I compares the effective multiplication factors 

of each solution scheme with the reference value. It is 

observed that the conventional ADF provides an 

improved keff than without any DFs. One can also clearly 

notes that, when the liner FDF in Eq. (1) is used, the keff 

error is reduced by only about 15% in comparison to the 

conventional simplified equivalence theory (SET) with 

ADFs. However, the quadratic FDF of Eq. (2) provides 

a much improved result, which shows about 65% 

reduced error compared with the SET result. 

 
Table I. The effective multiplication factor comparison  

(test problem I) 

 

 keff Error 

(pcm) 

# of outer 

iteration 

Reference 0.853100 - 446 

w/o DF 0.847584 -552 443 

ADF 0.850986 -211 438 

FDF(linear) 0.851304 -180 469 

FDF(quadratic) 0.852369 -73 470 

 

From Table I, it also is noticeable that the total 

number of outer iterations increases only slightly from 

the SET case, which means that the FDFs converges 

quickly and the computing time of whole-core 

calculation with FDFs will be comparable to the 

conventional method. The keff convergence behavior is 

shown in Fig. 6. It is important to note in Fig. 6 that the 

1st update of FDFs improves the keff value a lot and the 

successive FDF updates lead only to a marginal 

additional improvement. It is expected that only a few 

updates of the FDF will provide sufficiently improved 

accuracy of the solution. In the FDF iteration, it was 

observed that the FDF update may experience an over 

correction and the overall convergence can be impaired. 

However, it was found that over-correction of FDF can 

be easily fixed by using an under-relaxation of the FDF 

update. 

 

 
 

Fig. 6. The keff value vs. outer iteration in test problem I 

 

Figure 7 shows the assembly-wise normalized power 

distribution for each method and Table II shows the 

error in the assembly power profile. As shown in Table 

II, the maximum relative error and RMS error decreased 

a lot for both FDF schemes. Nevertheless, the absolute 

error of the quadratic FDS is rather high due to the 

extremely distorted power distribution caused by the 

heavy control rod insertion.  
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Fig. 7. Assembly power distribution (test problem I) 

 
Table II. Power distribution comparison  

(test problem I) 

 

 Max. relative 

error (%) 

RMS 

error (%) 

w/o DF 9.150 4.169 

ADF 7.162 2.834 

FDF(linear) 0.965 0.499 

FDF(quadratic) 3.334 1.508 

 

3.2. UO2 and MOX fuel loaded 1-D core problem 

 

A modified problem was also tested in which 

assemblies 4 and 8 are replaced with Fuel 3, which is a 

MOX fuel. The configuration of the second test problem 

is shown in Fig. 8. 

 

 
 

Fig. 8. The configuration of test problem II 

 

Because the neutronic characteristics of the MOX 

fuel is significantly different from the UO2 fuel, it is 

known that the application of nodal equivalence theory 

are more difficult for the MOX-containing problem. The 

results for the MOX-UO2 core are summarized in Table 

III. 

 
Table III. The effective multiplication factor comparison 

(test problem II) 

 

 keff Error 

(pcm) 

# of outer 

iteration 

Reference 0.868007 - 643 

w/o DF 0.860645 -736 608 

ADF 0.865856 -215 630 

FDF(linear) 0.865980 -203 616 

FDF(quadratic) 0.866993 -101 602 

 

When the MOX fuel is loaded into the core, the linear 

FDF just marginally improves the accuracy of keff. 

However, it is clearly noted that the quadratic FDF still 

provides a much improved keff value, reducing the keff 

error by about 53%. From Table III, it is also interesting 

to note that the number of outer iterations in the FDF 

case is even slightly reduced than in the conventional 

SET method. 

The convergence behavior of keff is shown in Fig. 9 

for the 2nd problem. In this case, the FDF update begin 

after ~400 outer iterations. Similarly to the problem I 

case, one can observe that the keff error is reduced 

noticeably after the 1st and/or 2nd FDF update and the 

continued updates provides a small improvement as in 

the 1st test problem. 

 

 
 

Fig. 9. The keff value vs. outer iteration 

(test problem II) 

 

Figure 10 shows the normalized assembly power 

distribution of the test problem II and Table IV shows 

the errors in the power profiles. 

 

 
Fig. 10. Assembly power distribution (test problem II) 

 

As shown in Table IV, it is clear that the quadratic 

FDF can improve the assembly power distribution in the 

difficult MOX-containing core problem. The maximum 
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relative error was decreased by ~51% for the 2nd order 

FDF, and RMS error was also decreased by ~36% for 

the 2nd order FDF. 

 
Table IV. Power distribution comparison  

(test problem II) 

 

 Max. relative  

error (%) 

RMS 

error (%) 

w/o DF 11.750 5.830 

ADF 4.293 1.796 

FDF(linear) 2.243 1.065 

FDF(quadratic) 2.089 1.158 

 

4. Conclusions 

 

In this study, we have proposed a new and unique 

method to improve accuracy of the nodal equivalence 

theory in reactor core analysis. The DFs are expressed 

as a function of node interface current-to-flux ratio. The 

evaluation of FDFs requires just a few more lattice 

calculations and they are updated during iterative 

calculation of whole-core calculation without significant 

change in computing time. It is clearly demonstrated 

that a quadratic FDFs can reduce the keff error more than 

50% in both conventional UO2 and UO2-MOX 

problems. Also, we have shown that the assembly power 

distribution is improved by using the FDF method. For a 

more practical utilization of the FDF method, its 

feasibility study for two-dimensional practical fuel 

assembly problems is underway. 
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