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1. Introduction 
 

This paper describes the Group Method of Data 

Handling (GMDH) algorithm to reconstruct 20-node 

axial core power shapes from five-level in-core detector 

powers. Conventional methods in this field are 

parameter identification framework by adopting fixed 

basis functions and the determination of parameters 

weighted to each terms of known functions like Fourier 

series or spline fitting. This study proposes GMDH to 

find not only the best functional form but also the 

optimal parameters those describe the power 

distribution most accurately. A total of 1,060 cases of 

axially 1-dimensional core power distributions of 20-

nodes are generated by 3-dimensional core analysis 

code covering BOL to EOL core burnup histories to 

validate the method. Axially five-point box powers at 

in-core detectors are considered as measurements. The 

reconstructed axial power shapes using GMDH method 

are compared to the reference power shapes. The results 

show that the proposed method is very robust and 

accurate compared with spline fitting method. 

 

2. Methods and Results 

 

The on-line reactor core monitoring/protection 

system performs important safety functions. It receives 

measurement data from in-core and/or ex-core detectors 

and analyzing them on real-time, providing important 

core parameters to operators. The application of the 

fifth order Fourier series method has long history of 

implementation [1].  

 

 

Figure 1.  One-dimensional spatial detector system 

 

The cubic spline synthesis is being used with 

improved accuracy in OPR1000/APR1400 power plants 

in Korea.[2] In these framework, the detector signals are 

transformed into the preset Fourier series or cubic spline 

form with weighting coefficients by evaluating the 

matrix product of a pre-set parameter matrix and the 

vector of the detector signals. The axial power 

distribution is then constructed by forming the sum, at 

each axial node, of the Fourier or cubic spline functions 

times their respective coefficients. The accuracy of 

current deterministic fitting methods highly depends on 

the number of detector signals and the functional forms 

used also appears to be inaccurate for certain axial 

shapes, especially saddle power shapes Figure 1 shows 

a general axial detector string used to reconstruct the 

continuous axial power distribution. 

 

2.1 Fitting Method 
 

The axial power shape is given by the weighted sum 

of basis functions and the weights as in Eq. 1.  
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where ( )P z : power at core height z, 
ja : amplitude 

coefficient, ( )jx z  : basis function at a specific location.  

The key element of this framework is that amplitude 

coefficient vector a to inter-connect pre-set basis 

function and detector measurements defined as follows.  
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a = H d                                    (2) 

where a : vector of basis function amplitudes, -1
H : pre-

calculated matrix for a selected basis function node set, 

d : vector of detector responses and boundary point 

powers. This kind of problem is to identify the structure 

and parameters of the detection system.  

 

2.2 GMDH Algorithm 
 

The GMDH method is based on the evolutionary 

algorithm selecting the optimal representation of 

polynomial support functions that describes the optimal 

functional form of given measurements according to a 

specified criterion.[4] The algorithm starts with the 

construction of polynomial support functions of non-

linear bases but linear-in-parameters known as the 

Kolmogorov-Gabor polynomial [5], 
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where ( )P z : power at core height z, 
ja : polynomial 

coefficient, ( )jx z  : detector measurements defined at 

specific location and N : number of detections. The 

multilayered iterative algorithm is applied to find the 
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structure of polynomials. The optimal solution for the 

estimation 
0 1 2[ ,  ,  ,  ]Ta a aa is obtained by the 

conventional least squares method. 

   The identified polynomial of (10)P  for the 20-points 

reconstruction becomes 
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Eq. (4) means that the 10th node power can be 

reconstructed by the in-core detector measurements of  

1 5~x x . The powers of (1) ~ (20)P P  can be given in a 

similar way. Eq. (4) is a single set of GMDH function to 

reconstruct (10)P  for all of the 1,060 power 

distributions. Figs. 2~4 shows the reconstruction results 

for various core states. GMDH results give nearly 

perfect and robust reconstruction of the power shapes. 

 
Fig. 2.  BOL power shape reconstruction 

 

 
Fig. 3.  Saddle power shape reconstruction 

 

The average RMS error of GMDH polynomial is 

0.0428 and that of cubic spline function is 0.1489. The 

maximum RMS error of GMDH polynomial is 0.5685 

far smaller than that of cubic spline function with the 

value of 1.8894. Figure 5 describes the RMS errors for 

cubic spline and GMDH basis function fittings. 

3. Conclusions 

 

It is shown that the GMDH analysis can give optimal 

basis functions for core power shape reconstruction.  

The in-core measurements are the 5 detector snapshots 

and the 20-node power distribution is successfully 

reconstructed. The effectiveness of the method is 

demonstrated by comparing the results of spline fitting 

for BOL, saddle and top-skewed power shapes. 

 

 
Fig. 4.  Top-skewed power shape reconstruction 

 
Fig. 5.  Root mean square errors  
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