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1. Introduction 

 
In fast reactor cross-section generation, simplified R-

Z geometry is analyzed to condense fine-group 
constants as shown in Fig.1. Because of the long mean-
free path of the fast neutron, an accurate model for 
simplified fast reactor is required rather than lattice 
calculation, which is generally used for thermal reactor 
system. 
 

 
Fig.1: Flow chart of fast reactor XS generation [1] 

 
Conventionally, simplified fast reactor model is R-Z 

geometry with volume conservation for each region. An 
example of hexagonal-Z configuration and its simplified 
R-Z model is shown in Fig.2.  
 

 
(a)                                               (b) 

Fig.2: Radial view of (a) Hex-Z fast reactor core, and  
(b) Simplified R-Z model 

 
In real hexagonal-Z configuration, control assembly 

position (red in Fig.2) is isolated. However, this control 
assembly position is converted to a single cylindrical 
ring in simplified R-Z geometry as shown in Fig.2-(b), 
which is far from original configuration. In Ref [2], the 
“RRZ” simplified model is proposed and analyzed by 
Monte Carlo simulation to deal with this problem. The 
control assembly is converted to isolated cylinder in 

“RRZ” simplified model. It shows good performance 
with use of discontinuity factors. But, “RRZ” simplified 
model is developed for Monte Carlo method, not for 
deterministic method. The other option would be R-θ-Z 
simplified geometry, but calculation burden for 
simplified core analysis will be dramatically increased 
in this approach. 

In this paper, a two-material coexisting ring model is 
proposed to improve simplified fast reactor geometry. 
In this newly proposed model, θ-direction homogenized 
model from R-θ-Z geometry will be solved, but neutron 
flux for each material in homogenized region will be 
obtained separately. This can be achieved by decoupling 
the balance equation and by introducing a proper 
streaming model between two materials at homogenized 
region, similarly to the “two-temperature homogenized 
model” [3]. The detail description and numerical results 
are followed. 
 

2. Methodology 
 

The two-material coexisting ring model solves θ-
direction homogenized model from R-θ-Z geometry as 
described in Fig.3. Technically, the newly proposed 
model deals with R-Z simplified geometry, but neutron 
flux for each region is obtained separately at the two-
material coexisting ring domain. 

 

 
(a)                                           (b) 

Fig.3: Radial view of (a) R-θ-Z geometry, and 
 (b) two-material coexisting ring model 

 
In this paper, 2-D hexagonal fast reactor geometry is 

considered as a reference configuration for sake of 
simplicity. In this case, infinite cylindrical geometry is a 
conventional simplified fast reactor configuration. The 
extension of the two-material coexisting ring model to 
the 3-D hexagonal-Z fast reactor geometry will be 
straightforward. 
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2.1. Governing equation for two-material coexisting 
ring 

 
To obtain neutron flux for each region separately in 

the two-material coexisting ring, the balance equation 
for coexisting ring domain should be derived first. 
Eq.(1) shows the integrated balance equation at i-th fine 
mesh cell in SN formulation in infinite cylindrical 
geometry:  
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The “bar” represents the homogenized parameters 

and the others follow the standard notation. 
In Eq.(1), homogenized parameters are unknown. 

Eq.(2) shows the definition of the homogenized 
parameters in Eq.(1): 
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where Af  is the fraction of material A occupied in 
coexisting ring, and Bf  is the fraction of material B 
occupied in coexisting ring. 

After inserting Eq.(2) into Eq.(1), then Eq.(1) is 
decomposed into two equations after some algebra. One 
is the balance equation for material A, and the other is 
for material B. Eqs.(3a) and (3b) show the two-
decomposed balance equations: 
 

Streaming between Material A and B
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Streaming between Material A and B
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In the decomposition procedure, it is noted that there 
is a cancelled term in Eq.(1). Physically, that is the 
neutron streaming between two materials. Therefore, in 
decomposed balance equation, this neutron streaming 
between two materials should be added as described in 
Eq.(3). 

Up to now, there is no approximation. If we sum up 
Eqs.(3a) and (3b), and use relationship of the 
homogenized parameters (Eq.(2)), Eq.(1) can be simply 
re-obtained. If the streaming term between two materials 
is specified properly, it is expected that the neutron flux 
solution for material A and B can be obtained accurately. 
 
2.2. Streaming model between two materials in 
coexisting ring 
 

In the two-temperature homogenized model [3], heat 
exchange between fuel kernel and graphite matrix is 
expressed as ( .) ( )f mCouping coeff T T´ - . Because the heat 
conduction equation is similar to the neutron diffusion 
equation, this diffusion-like heat exchange model 
(driving force is a difference of temperatures) is a useful 
point of reference. However, in the two-material 
coexisting ring model, we are dealing with neutron 
transport equation. Therefore, in two-material 
coexisting ring model, streaming model between two 
materials is provided by using angle-dependent CMR 
(Coarse Mesh Rebalancing)-like concept. 

In this steaming model, two coupling coefficients are 
introduced. One is for neutron streaming from material 
A to B, A BC ® , and the number of neutrons passing from 
material A to B is expressed as A

A BC ry® D . The other one 
is for streaming from material B to A, B AC ® , and the 
number of neutrons passing from material B to A is 
expressed as B

B AC ry® D .  
Putting these streaming models into Eq.(3), we obtain 

the final form of governing equations in the coexisting 
ring region : 
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If we use auxiliary equation such as DD (Diamond 

Difference) scheme on angular and spatial differencing, 
Eq.(4) can be solved. 
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2.3. Determination of coupling coefficients 
 

The coupling coefficients are determined by solving a 
1-D stretched geometry problem as shown in Fig.4. This 
1-D stretched geometry problem is built by selecting a 
unit segment of the coexisting ring region with 
reflective boundary condition, and converting this into 
simple 1-D slab geometry with volume conservation. 
Conversion of a curvilinear geometry to the slab 
geometry can reduce the calculation burden significantly. 
 

 
 

Fig.4: 1-D stretched slab geometry to determine 
coupling coefficients 

 
After solving 1-D stretched slab geometry problem, 

coupling coefficient A BC ®  is calculated as: 
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The coupling coefficient B AC ®  can be calculated in a 

similar way. 
The two-material coexisting ring model for simplified 

fast reactor geometry requires additional calculation in 
determining the coupling coefficients. However, if 
level-symmetry quadrature is used, quadrature angles 
for 1-D stretched slab geometry can be collapsed. In 
level-symmetry quadrature, there are angles which have 
the same h  values, and these angles can be collapsed 
into one angle. Hence, the calculational burden to solve 
1-D stretched slab geometry problem is not heavy. 
 

3. Numerical Results 
 
In this paper, a simple 2-D hexagonal fast reactor test 

problem is considered. The core configuration is shown 
in Fig.5. 

 

 
 

Fig.5: 2-D hexagonal fast reactor test problem 
configuration 

The conventional simplified fast reactor geometry 
(infinite cylinder in this case) and newly proposed two-
material coexisting ring model will be solved, and the 
results of the average neutron spectrum for each region 
are compared with 2-D hexagonal and R-θ geometry 
solutions. 

All calculations are done under S8 discrete ordinates 
method. Cross-section set is generated in 150-group 
structure with isotropic scattering by the TRANSX code 
[4]. 

 
Fig.6 shows the average neutron flux of 2-D 

hexagonal reference configuration. This calculation is 
done by the TWODANT code [5]. 
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Fig.6: Average neutron flux of 2-D hexagonal 

configuration for each region. 
 

In neutron spectrum comparison, average neutron 
spectrum at each region is normalized to have the same 
integrated value over the whole energy range. 

When 2-D hexagonal configuration is considered as a 
reference, Figs.7 and 8 show the relative error of the 
average neutron spectrum for conventional simplified 
model and two-material coexisting ring model, 
respectively. Below 10,000 eV, the neutron flux level is 
very low compared to higher energy region. Hence, 
Figs.7 and 8 focus on the energy region above 10,000 
eV. 
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Fig.7: Relative error of the average neutron spectrum 

between conventional simplified model and 2-D 
hexagonal geometry 
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Fig.8: Relative error of the average neutron spectrum 
between two-material coexisting ring model and 2-D 

hexagonal geometry 
 

 
As shown in Figs.7 and 8, newly proposed model 

shows better neutron spectrum results compared with 
conventional simplified model. Especially in control 
assembly, relative error in the spectrum is much 
flattened. The reason of this is that the effect of distinct 
locations of control and fuel materials is considered in 
two-material coexisting ring model unlike in the 
conventional model.  

However, in Fig.7, significant discrepancy in neutron 
spectrum still exists in the reflector region. This 
discrepancy comes from the difference between 2-D 
hexagonal and R-θ geometries. 

 
When R-θ configuration is considered as a reference, 

Figs.9 and 10 show the relative error of the average 
neutron spectrum for conventional simplified model and 
two-material coexisting ring model, respectively. 

It is observed that two-material coexisting ring model 
is relatively in good agreement with R-θ geometry 
reference in spectrum comparison. 
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Fig.9: Relative error of the average neutron spectrum 

between conventional simplified model and R-θ 
geometry 
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Fig.10: Relative error of the average neutron spectrum 
between two-material coexisting ring model and R-θ 

geometry 
 

Although neutron spectrum results are improved 
when two-material coexisting ring model is adopted, 
there is a problem to be solved on the effect of incoming 
angular flux splitting. Figure 11 shows the relative 
difference of the average neutron “flux level” between 
two-material coexisting ring model and R-θ geometry 
reference. 
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Fig.11: Comparison of average neutron flux levels 

between two-material coexisting ring model and R-θ 
geometry 

 
As shown in Fig.11, two-material coexisting ring 

model over-estimates neutron flux in control assembly 
region. However, the relative differences are rather flat, 
so that good agreement on neutron spectrum is obtained 
as shown in Fig.10. 

In the present two-material coexisting ring model, 
incoming angular flux from non-coexisting ring region 
to coexisting ring region is split based on fraction 
occupied in coexisting ring. However, physically, 
neutron flux near the control assembly is lower than 
other regions, so fewer neutrons should go into control 
assembly in the coexisting ring region than the present 
treatment used in the two-material coexisting ring model. 
Therefore, a more appropriate incoming angular flux 
splitting model should be investigated for coexisting 
ring region. 
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4. Conclusions and Future Work 
 

To improve current simplified fast reactor analysis 
for group condensation in fast reactor analysis, two-
material coexisting ring model is proposed in this study. 
In the two-material coexisting ring model, θ-direction 
homogenized model from R-θ-Z geometry is solved, but 
neutron flux for each material in homogenized region is 
obtained separately. 

To describe neutron streaming between two materials 
in the coexisting ring, two coupling coefficients are 
introduced, and these are determined by solving a 
simple 1-D stretched slab geometry problem. 

In the numerical results on simple 2-D fast reactor 
test problem, newly proposed two-material coexisting 
ring model shows better neutron spectrum estimation 
compared with conventional simplified model. From 
these results, it is expected that accurate group 
condensation procedure can be achieved. In addition, a 
coarser few-group structure may be possible to analyze 
fast reactor systems. 

However, it is also shown that there is an issue of 
incoming angular flux splitting in coexisting ring region. 
In the present two-material coexisting ring model, 
neutron flux in control assembly region is over-
estimated. 

As a further study, a more appropriate incoming 
angular flux splitting model will be investigated. After 
that, few-group fast reactor analysis by using the two-
material coexisting ring model for condensation is also 
planned. 
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