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1. Introduction 

 
During the review of the critical heat flux models for 

saturated pool boiling on infinite horizontal surfaces, we 
noticed that the effect of fluid viscosities is not included 
in most existing models. The absence of fluid viscosities 
in most existing models may be attributed to the fact that 
inviscid flow analyses are performed for the model 
development. For example, the hydrodynamic theory and 
macrolayer dryout models rely on the Rayleigh-Taylor, 
Kelvin-Helmholtz, and capillary instabilities for inviscid 
fluids. However, as the viscosities of two fluids become 
closer, none of them cannot be neglected. Moreover, the 
gas viscosity effect cannot be neglected on the condition 
that the gas layer is thin. Nevertheless, the previous 
studies neglected the viscous effect.  

Recently, Kim et al. [1] showed that for the model 
development of critical heat flux and minimum film 
boiling, the Rayleigh-Taylor instability should be 
analyzed with a thin layer of viscous gas instead of a 
thick layer of inviscid gas. At to the most unstable 
wavelength, the case for two semi-infinite layers of 

inviscid fluids yields 1/22 (3 / ( ))d g     , whereas 

the case for a thin layer of viscous gas underlying a semi-
infinite layer of viscous liquid gives 

1/22 (2 / ( ))d g     , where  ,  , and g  are the 

surface tension, density difference between liquid and 
gas, and gravitational acceleration, respectively. The 
decrease of the most unstable wavelength was shown to 
improve the prediction accuracy of critical heat flux 
models for various fluids, particularly at elevated 
pressures. In addition, the most dangerous wavelength 
and the most rapid growth rate for viscous thin films are 
shown to be applicable to the minimum heat flux 
condition. 

Kim et al. [1] touch only the most unstable 
wavelength for developing critical heat flux models. The 
critical heat flux is inversely proportional to the square 
root of the most unstable wavelength (Zuber [2], Guan et 
al. [3]). Here, we notice that the existing critical heat flux 
models make use of the Kelvin-Helmholtz instability of 
inviscid flows. The Kelvin-Helmholtz instability 
determines the maximum vapor escape velocity (Zuber 
[2]) and the initial liquid macrolayer thickness 
(Haramura and Katto [4]). Therefore, there is a room for 
improving the prediction accuracy by the help of the 
Kelvin-Helmholtz instability of viscous fluids.  

The Kelvin-Helmholtz instability arises when the 
different fluid layers are in relative motion. Usually, a 
uniform flow is considered in each fluid layer, allowing 
a velocity discontinuity at the interface. Therefore, in 

general, the Kelvin-Helmholtz instability is analyzed 
based on a potential flow of inviscid fluids.  However, if 
the viscosity effect is taken into consideration, a non-
uniform flow occurs due to the shear stress at the 
interface. The idea to incorporate the effects of fluid 
viscosities into the Kelvin-Helmholtz instability can be 
found in the viscous potential flow theory. 

Joseph and Liao [5] showed that the potential 
(irrotational) flow of viscous fluids satisfies the Navier-
Stokes equation. For the potential flow, since the 
vorticity is identically zero, the viscous term vanishes in 
the Navier-Stokes equation; the motion of fluid is 
governed by the Bernoulli equation. However, the 
viscous stresses do not vanish in general. Therefore, the 
viscous pressure is entered through the normal stress 
balance at the interface. In the viscous potential flow, the 
shear stress is neglected at the interface and wall, and 
thus there is a velocity slip at the interface. These 
treatments are consistent with the fact that the interface 
waves are induced more by pressure than by shear force. 
Funada and Joseph [6] presented a viscous potential flow 
analysis of the Kelvin-Helmholtz instability. Funada et 
al. [7] carried out a stability analysis of a circular fluid 
jet into another fluid. Funada and Joseph [8] considered 
the capillary instability. The viscous potential flow 
analysis is more accurate than the inviscid flow analysis 
in terms of the growth rate. Therefore, the critical 
condition of the Kelvin-Helmholtz instability can be 
predicted more accurately than the inviscid flow analysis. 

In this study, the interfacial instabilities of viscous 
potential flows are applied to critical heat flux models for 
saturated pool boiling on infinite horizontal surfaces, 
with the aim of including the effects of fluid viscosities. 
The critical conditions of the circular jet and Kelvin-
Helmholtz instabilities are incorporated into the 
hydrodynamic theory model and liquid macrolayer 
dryout model. 

 
2. Interfacial Instabilities of Viscous Potential Flow 

 
2.1Kevin-Helmholtz Instability 

 
Fig. 1 a) Two fluid layers with different densities move parallel 
to each other in a 2D channel. b) A circular gas jet issues into a 
liquid. 
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Funada and Joseph [6] presented the Kelvin-

Helmholtz instability (Fig. 1a). Let gU  and fU  be the 

gas and liquid velocities, respectively. Hereafter, the gas 
and liquid are denoted by g  and f , respectively. If the 

gravity effect is ignored, which is reasonable because the 
vapor jet issues upward, the critical relative velocity 

c g fU U U   is given by 

 2
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for inviscid potential fluids, and 
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 (2) 
for viscous potential fluids, where  ,  ,  , and ck    

are the density, viscosity, fluid layer thickness, and 
critical wavenumber, respectively. 
 
 
2.2 Circular Jet Instability 
 

Funada et al. [7] carried out a stability analysis for a 
circular fluid jet into another fluid (Fig. 1b). If the 
relative velocity between the jet and the surrounding 
fluid is zero, the situation is the same as the capillary 
instability. On the other hand, as the relative velocity 
increases, the jet undergoes the Kelvin-Helmholtz 
instability. Only a gas jet into a liquid is considered here. 
The critical relative velocity is given by 

 2
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for inviscid potential fluids, and 
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for viscous potential fluids, where R  is the gas jet 
diameter. The non-dimensional variables g , f , g , 

and f  are defined as 

 0
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where 0I  and 1I  are the modified Bessel functions of the 

first kind, and 0K  and 1K  are the modified Bessel 

functions of the second kind. For large jet diameters, g , 

f , g , and f  approach unity. In this case, Eq. (3) 

and (4), respectively, become close to Eq. (1) and (2) 
with large g  and f . In other words, circular jets with 

large diameters can be analyzed by the Kelvin-
Helmholtz instability with large fluid thicknesses. 
 

 
 

 
Fig. 2 Schematics of pool boiling critical heat flux models on 
infinite horizontal surfaces: a) Hydrodynamic instability model 
(top view of rising jets); b) Liquid macrolayer dryout model 
(side view of rising vapor masses). 

 
 

3. Revised Critical Heat Flux Models 
 
2.1 Hydrodynamic Model 

 
Zuber [2] developed a critical heat flux model, 

assuming that circular vapor jets rise at the nodes of 
Taylor waves and that the jet diameter is half of the jet 
spacing (Fig. 2a). As a result, the critical heat flux was 
formulated as 

 max 16 g gq LU
  ,  (7) 

where gU  is the maximum gas velocity which 

corresponds to the critical condition of the Kelvin-
Helmholtz instability. The critical relative velocity for an 
inviscid flow is 

 

1/2

2 g f
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where c  is the critical wavelength. Zuber`s choice for 

c  was the critical wavelength of capillary waves:

2c R  , where R  is the radius of circular gas jets. As 

a consequence, Zuber obtained 
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where L  is the latent heat. At low pressures, the above 
equation is approximated as 

 max
1/2 1/4

0.131
( )g

q

L g  



.  (10) 

An inconsistency is pointed out in Zuber`s model. 
Equation (8) is the result of the Kelvin-Helmholtz 
instability. However, the choice for c  in Eq. (8) is the 

critical wavelength of standing capillary waves. Note 
that 2c R   (or 1 /ck R ) leads to 

0c g fU U U    for circular gas jets, as shown in Eqs. 

(3) and (4). This means that the vapor velocity is zero in 
pool boiling, and thus the critical heat flux becomes zero. 

To avoid this unphysical assumption, the instability 
analysis for circular gas jets must be utilized. As Zuber 
[2] did, let us first assume / 4dR  , where d   is the 
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most unstable wavelength of the Rayleigh-Taylor 
instability. Using the conservation of mass, 
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For an inviscid flow, Eq. (3) is combined with Eq. (11) 
to give 
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Upon substituting of this into Eq. (7), we have 
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The most unstable wavelength d  is given by the 

Rayleigh-Taylor instability. There is a drawback of the 
Rayleigh-Taylor instability of the viscous potential flow. 
As the thickness of the gas layer decreases to the extent 
of creeping flow, the most unstable wavelength tends to 
increase unboundedly though the fastest growth rate may 
become accurate (Kim et al. [1]). Therefore, when the 
gas layer is thin, either fully viscous flow analysis or 
lubrication approximation should be made. In those 

analyses, d  is given by 1/22 (2 / ( ))g    for a thin 

layer of gas. The critical wavenumber ck  is supposed to 

be 1/2( / )g   . Then, we can write Eq. (13) as 
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 (14) 
For large jet diameters such that g  and f  settle to  

unity,  the above equation reduces to the form of Eq. (9).  
Now let us consider a viscous potential flow. 

Equation (4) is combined with Eq. (11) to give 
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Substituting this into Eq. (7) and using 
1/22 (2 / ( ))d g      and 1/2( / )g   , we obtain 
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This is the revised hydrodynamic model based on the 
viscous potential flow. Yagov [9] stated that if one 
considers only the surface tension and body forces, one 
inevitably obtains an equation similar to Eq. (9) in view 

of a dimensional analysis. In fact, most of the critical heat 
flux models only replace the right-hand side of Eq. (9) by 
values that are functions of the liquid-gas density ratio. 
However, it is noteworthy that Eq. (16) includes liquid 
and gas viscosities. Unknown parameters will be 
determined in the next chapter. 

 
 

2.3 Liquid Macrolayer Dryout Model 
 
Haramura and Katto [4] postulated that critical heat 

flux occurs when the liquid macrolayer under the 
massive vapor bubble evaporates away during the 
hovering time of the overlying vapor mass (Fig. 2b). 

 max (1 / )f c g wq L A A f   ,  (17) 

where c , gA , wA , and f  are the initial macrolayer 

thickness, total bottom area of vapor stems, area of the 
heated surface, and bubble detachment frequency, 
respectively. The bubble detachment frequency was 
related to the motion of a growing bubble from the heater 
surface. The initial macrolayer thickness was assumed to 
be ,ipf / 4c c  , where ,ipfc  is the critical wavelength 

of the Kelvin-Helmholtz instability for  inviscid potential 
flows: 
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With the above assumptions, Haramura and Katto [4] 
obtained 
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 (19) 
and equated the right-hand side to the value of 0.131, 
giving 

 0.2/ 0.0584( / )g w g fA A    . (20) 

Now, the results of instabilities of viscous potential 
flows are applied to the dryout model. A summary is 
described below. The critical wavelength for the Kelvin-
Helmholtz instability is given by 
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The liquid macrolayer thickness is assumed to be 

,vpf (2 / )c c ck     . The liquid macrolayer 

thickness is calculated using the correlation by Rajvanshi 
et al. [10]. Consequently, we obtain 
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where 
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4. Results and Discussion 
 

There is only one unknown parameter   in Eqs. (14)

and (16) because g , f , g , and f  are linked to   

through  1/2
/ck g    . Lienhard and Dhir [11] 

noticed that Eq. (9) slightly under-predicts the 
experimental data of various liquids. They modified the 
numerical constant as follows: 
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We rely on the accuracy of Eq. (25) at atmospheric 
pressure. It is now postulated that at atmospheric 
pressure, the right-hand sides of Eqs. (14)and (16) equal 
the right-hand side of Eq. (25). The value of    was 

numerically solved for various liquids, and the results are 
provided in Table 1. Interestingly,   does not vary 

significantly from fluid to fluid, except for water. 
Figure 3 compares the predictions by Eqs. (14) and 

(16) with experimental data of water. The models of 
Zuber [2] (Eq. (9)), Lienhard and Dhir [11] (Eq. (25)), 
and Yagov [9] are also plotted in the figure. The model 
of Yagov [9] is the one for moderate and elevated 
pressures: 0.6 0.4 0.2

max 0.06 ( / )g fq L g     . The lines 

are the predictions by the models, and the symbols are 
the experimental data. Indistinguishable differences are 
seen between Eqs. (14) and (25), which may be 
attributed to the fact that they are based on inviscid flows. 
However, the prediction accuracy of Eq. (16) is greatly 
improved at moderate and elevated pressures. The 
inclusion of viscosities contributes to such improvement. 
From now, only the models based on the viscous 
potential flow will be considered. 

Figure 4 shows a comparison of the revised 
macrolayer dryout model, Eq. (22),  with experimental 
data of water. The values predicted by Haramura and 
Katto [4] are the same as those by Zuber [2]. As 
mentioned previously, only the difference between the 
present work and Haramura and Katto [4] is the use of 
(21) instead of Eq. (18). This difference leads to 
improved predictions in Fig. 4. Sakashita and Ono [12] 
developed a semi-empirical correlation for the bubble 
detachment frequency of water boiling at elevated 
pressures, and they applied it to the liquid macrolayer 
dryout model. The predictions marked by Sakashita and 
Ono [12] in Fig. 4 show considerable over-predictions at 
low pressures.  

Recall that  , g , f , g , and f  in Table 1 are 

close to one another, except  water. The averaged values 

of five liquids except water ( 1.01  , 1.36g  , 

0.832f  , 0.915g  , 1.27f  ) are used to predict 

the critical heat flux for those liquids using the revised 
hydrodynamic model in Eq. (16). Figures 5 through 9 
show the comparison results for organic fluids. In the 
figures, predictions marked by the present 
(hydrodynamic) and present (macrolayer), respectively, 
correspond to the revised hydrodynamic model in Eq. 
(16), and the revised macrolayer model in Eq. (22). 
Unlike water, the predicted values from the revised 
macrolayer model are higher than those from the revised 
hydrodynamic model. For organic fluids, at a glance, the 
revised models show prediction accuracies similar to 
Lienhard and Dhir [11]. The prediction accuracies are not 
improved as much as in water. One of reasons may be 
attributed to the high viscosity ratios for organic fluids. 
Figure 10 shows the ratio of the liquid viscosity to the 
vapor viscosity depending on the pressure. As seen, the 
viscosity ratio is the lowest for water. As the vapor and 
liquid viscosities become closer, none of them cannot be 
neglected. However, for the other organic fluids, the 
vapor viscosity is considerably lower than the liquid 
viscosity. In this case, the effect of the vapor viscosity 
diminishes, and the inclusion of the viscosity may not be 
effective than expected. Nevertheless, the advantage of 
the revised models consist in the inclusion of the effect 
of fluid viscosities. 

 
5. Conclusions 

 
Circular jet instabilities is incorporated into the 

hydrodynamic theory model. For water, the circular jet 
instability of an inviscid potential flow does not show 
any improvement of the prediction accuracy over the 
existing model, whereas the circular jet instability of a 
viscous potential flow shows a considerable 
improvement particularly at elevated pressures. There is 
one unknown variable in the revised hydrodynamic 
model. Interestingly, the variable is shown to vary little 
from fluid to fluid, except for water. Meanwhile, the 
Kelvin-Helmholtz instability of a viscous potential flow 
is used to determine the initial macrolayer thickness in 
the liquid macrolayer model. The revised macrolayer 
model shows improved predictions as accurate as 
Lienhard and Dhir [11]. By the inclusion of the effects of 
fluid viscosities, the models become, on the whole, more 
accurate than the models based on inviscid potential 
flows. 

 
Table 1. Parameters in Eq. (13) and (16) 

Fluid Equation   
g  f  g f

Water 
Eq. (13) 0.994 1.372 0.828 - - 
Eq. (16) 1.640 1.179 0.885 0.904 1.160

Methanol Eq. (16) 1.081 1.326 0.839 0.910 1.255
Hexane Eq. (16) 1.013 1.361 0.830 0.916 1.275
R113 Eq. (16) 0.996 1.370 0.828 0.918 1.280

Pentane Eq. (16) 1.012 1.361 0.830 0.916 1.275
Ethanol Eq. (16) 1.017 1.358 0.831 0.916 1.273
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Fig. 3 Comparison of the revised hydrodynamic models with 
experimental data of water. Eq. (14): inviscid potential flow 
(blue line), Eq. (16): viscous potential flow (red line) 
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Fig. 4 Comparison of the revised macrolayer model, Eq. (22), 
with experimental data of water. 
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Fig. 5 Comparison of the revised models based on viscous 
potential flow with experimental data for methanol. 
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Fig. 6 Comparison of the revised models based on viscous 
potential flow with experimental data for hexane. 
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Fig. 7 Comparison of the revised models based on viscous 
potential flow with experimental data for R113. 
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Fig. 8 Comparison of the revised models based on viscous 
potential flow with experimental data for pentane. 
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Fig. 9 Comparison of the revised models based on viscous 
potential flow with experimental data for ethanol. 
 

0.0 0.2 0.4 0.6 0.8 1.0
1

10

100

methanol

R113

 Hexane
 Pentane
 Ethanol

 f/
g (

-)

p/p
cr

 (-)

water

Fig. 10 Variations of the viscosity ratios with the pressure. 
 

Bonilla and Perry [13, Samokhin and Yagov [14] Sterman and Korychanek [15] Abuaf and Staub [16] 
Berenson [17] Ramilison and Lienhard [18] Labuntsov [19]   

 
REFERENCES 

 
[1] B.J. Kim, J.H. Lee, K.D. Kim, Rayleigh-taylor instability 

for thin gas films: Application to critical heat flux and 
minimum film boiling, International Journal of Heat and 
Mass Transfer 80 (2015) 150-158. 

[2] N. Zuber, Hydrodynamic aspects of boiling heat transfer, 
Ph.D. Thesis, University of California, Los Angeles, USA, 
1959. 

[3] C.-K. Guan, J.F. Klausner, R. Mei, A new mechanistic 
model for pool boiling chf on horizontal surfaces, 
International Journal of Heat and Mass Transfer 54 (17–18) 
(2011) 3960-3969. 

[4] Y. Haramura, Y. Katto, A new hydrodynamic model of 
critical heat flux, applicable widely to both pool and forced 
convection boiling on submerged bodies in saturated 
liquids, International Journal of Heat and Mass Transfer 26 
(3) (1983) 389-399. 

[5] D.D. Joseph, T.Y. Liao, Potential flows of viscous and 
viscoelastic fluids, Journal of Fluid Mechanics 265 (1994) 
1-23. 

[6] T. Funada, D.D. Joseph, Viscous potential flow analysis of 
kelvin–helmholtz instability in a channel, Journal of Fluid 
Mechanics 445 (2001) 263-283. 

[7] T. Funada, D.D. Joseph, S. Yamashita, Stability of a liquid 
jet into incompressible gases and liquids, International 
Journal of Multiphase Flow 30 (11) (2004) 1279-1310. 

[8] T. Funada, D.D. Joseph, Viscous potential flow analysis of 
capillary instability, International Journal of Multiphase 
Flow 28 (9) (2002) 1459-1478. 

[9] V.V. Yagov, Is a crisis in pool boiling actually a 
hydrodynamic phenomenon?, International Journal of Heat 
and Mass Transfer 73 (0) (2014) 265-273. 

[10] A.K. Rajvanshi, J.S. Saini, R. Prakash, Investigation of 
macrolayer thickness in nucleate pool boiling at high heat 
flux, International Journal of Heat and Mass Transfer 35 (2) 
(1992) 343-350. 

[11] J.H. Lienhard, V.K. Dhir, Extended hydrodynamic theory 
of the peak and minimum pool boiling heat fluxes, NASA 
CR-2270, NASA, USA, 1973. 

[12] H. Sakashita, A. Ono, Boiling behaviors and critical heat 
flux on a horizontal plate in saturated pool boiling of water 
at high pressures, International Journal of Heat and Mass 
Transfer 52 (3–4) (2009) 744-750. 

[13] C.F. Bonilla, C.W. Perry, Heat transmission to boiling 
binary liquid mixtures, Transactions of American Society 
of Chemical Engineers 41 (1941) 755-787. 

[14] G.I. Samokhin, V.V. Yagov, Heat transfer and critical heat 
fluxes with liquids boiling in the region of low reduced 
pressures, Thermal Engineering (English translation of 
Teploenergetika) 35 (1988) 746-752. 

[15] L.S. Sterman, J. Korychanek, Critical heat fluxes during 
boiling of high-boiling heat carriers, Soviet Atomic Energy 
29 (5) (1970) 1124-1125. 

[16] N. Abuaf, F.W. Staub, Low pressure pool boiling and 
critical heat flux limits for r-113, AIChE Symposium series 
79 (225) (1983) 35-40. 

[17] P.J. Berenson, Experiments on pool-boiling heat transfer, 
International Journal of Heat and Mass Transfer 5 (10) 
(1962) 985-999. 

[18] J.M. Ramilison, J.H. Lienhard, Transition boiling heat 
transfer and the film transition regime, Journal of Heat 
Transfer 109 (3) (1987) 746-752. 

[19] D.A. Labuntsov, About a new approach in boiling crisis 
theory, Thermal Engineering (English translation of 
Teploenergetika) 8 (1961) 81-85. 

 


