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1. Introduction 

 
The Rayleigh-Taylor instability occurs when a 

heavier fluid overlies a lighter fluid in a gravitation field 
(Fig. 1). This instability plays an important role in the 
boiling heat transfer models for critical heat flux and film 
boiling. During the film boiling, the heat and mass 
transfer occur at the interface. However, numerous 
studies on the Rayleigh-Taylor instability have been 
done for isothermal flows. The studies considering the 
phase change are very limited.  

[1] and [2] incorporated, for the first time, the phase 
change effect into the Rayleigh-Taylor instability for 
inviscid fluids. Those works showed that the evaporation 
had the stabilizing effect reducing the growth rate, 
whereas the condensation had the destabilizing effect. [3] 
presented the Rayleigh-Taylor instability of viscous 
fluids with heat and mass transfer. He showed that there 
was a strong stabilizing effect arising from the coupling 
viscosity and phase change. However, the analysis was 
made for fluids with equal kinematic viscosities. [4] also 
obtained the dispersion relation for viscous fluids with 
heat and mass transfer. The method was easier than [3], 
however, the fluids layers were semi-infinite in the 
extent, and they had equal kinematic viscosities. 

For film boiling, the liquid layer can be considered to 
be semi-infinite, but the vapor layer is finite. The purpose 
of this study is to derive the dispersion relation for 
viscous fluids with heat and mass transfer. The vapor 
layer is finite while the liquid layer is semi-infinite. Two 
fluids have different properties. The critical and most 
unstable conditions are investigated considering the 
phase change effect.  

 

 
Fig. 1 Two-dimensional Rayleigh-Taylor instability of viscous 
gas-liquid interface with evaporation. The liquid layer is semi-
infinite in the extent. 
 

 
2. Rayleigh-Taylor Instability 

 
A two-dimensional stability analysis is performed for 

incompressible viscous fluids with heat and mass 
transfer. The lighter fluid (vapor) is bounded by a heating 
wall and a heaver fluid (liquid). Two fluids are separated 
by a horizontal interface at is 1y d= . The base flow is 
motionless and thermally in an equilibrium state [1, 2]. 
All of the heat across the vapor layer from the heating 
wall go into the liquid layer without evaporation. The 
fluids are perturbed by a small disturbance with 

ikx te wh h +¢ = % , where k  is the wavenumber and w  is the 
growth rate. Substituting the perturbed quantities into the 
continuity and momentum equations, we obtain 
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where the subscripts 1 and 2 indicate the vapor and liquid, 
respectively. ( )v v y=% %  is the amplitude of the y  
velocity, and n  is the kinematic viscosity. 

The no-slip velocity condition is applied to the wall: 
 1 0v =% , 1 0v¢ =% . (at 0y = )   (3) 

The liquid is unbounded. Thus, 
 2 0v ®% . (as y ®¥ ) (4) 

Below are the interfacial conditions. 
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Equations (5) ~ (8) result from the mass/energy transfer 
matching, tangential velocity matching, normal stress 
balance, and shear stress matching, respectively. The 
variable b  quantifies the degree of heat transfer at the 
base state as  1 2/ (1/ 1/ ) /G Ld d+ , where L  is the latent 
heat and G  is 1 1 0 1 2 0 2 2( ) / ( ) /K T T K T Td d- = - . K  is 
the thermal conductivity. 

For a non-dimensional analysis, we define 
2 1/m m m= , 2 1/r r r= , 1ka d= , 1 1/ ( )c gwm r d= D , 

3 2
1 1 1/F gr r d m= D , 2

1 /B gr d s= D , and 2
1 1/bb d m= . 
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The length and velocity are scaled by 1d  and 

2
1 1/gr d mD , respectively. The dimensionless form of 

Eqs  (1) and (2) are given by 
 2 2 2 2

1 1 1( ) 0IVv p v p va a¢¢- + + = , (0 1)y£ £   (9) 
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respectively. v  and y  are scaled variables, and 
2 2p Fca= +  and 2 2 /q rFc ma= + . The wall and 

interfacial conditions through Eqs. (3)~(8) are, 
respectively, expressed as 
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The general solution of (9) is  

 ( 1) ( 1) ( 1) ( 1)
1 11 12 13 14( ) y y p y p yv y A e A e A e A ea a- - - - - -= + + + . (17) 

However, for the liquid to satisfy Eq. (12), the solution 
of Eq. (10) should be in the form  

 ( 1) ( 1)
2 21 23

y q yv A e A ea- - - -= + .  (18) 
The form for the exponent is intended for easy 
applications of the interfacial conditions at 1y = . Upon 
substitution of Eqs. (11)~(16) into Eqs. (17) and (18), we 
have a linear matrix system for 11A , 12A , 13A , 14A , 21A , 

and 23A . For non-trivial solutions, the determinant of the 
matrix must be zero. Consequently, (19) (20) 

Equation (20) leads to the dispersion relation: 
 1 1 2 3 3 4 4 5 5 6 0V A B AB A B A B A B A= + + + + + = , (21) 
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1 cosh sinh sinh coshB p p pa a a= - , 
2 2

2 2 (1 cosh cosh ) ( )sinh sinhB p p p pa a a a= - + + , 

3 cosh sinh sinh coshB p p pa a a= - , 

4 sinh sinh cosh coshB p p pa a a= - , 

5 sinh sinh cosh coshB p p pa a a= - . 
 

For isothermal flow ( 0b = , 1R J= = ), the dispersion 
relation reduces to the form of [5]. Physically, the 
wavenumber is real and positive, whereas the growth rate 
may be complex.  

 
 

3. Results and Discussion 
 

2.1 Effects of Evaporation 
 

The dispersion relation, Eq. (21) was numerically 

solved using MATLAB. Figure 2 shows the growth rate 
c  as a function of the wavenumber a  for isothermal 
flows ( 0b = ). The fluid properties are those of saturated 
water and vapor at 150 bar. The vapor film thickness 
varies from 1F =  to 810F = . Figure 3 shows that when 
the evaporation decreases the growth rate. The effect of 
evaporation becomes more distinct for thin vapor films. 
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where ( ) / ( )R r rFc rFcb b= + + , / ( )J rFc rFcb= + , and 1 2(1 ) /T B ca a-= - . The 6x6 matrix can reduce to 
the following 4x4 matrix using the determinant properties. 
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Fig. 2 Growth rate c  for various thicknesses F of vapor layer. 
The phase change is not considered. 
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Fig. 3 Effect of phase change on the growth rate. The arrows 
indicate the direction of increasing evaporation. 

 
 
2.2 Critical condition 
 

The critical condition is the point at which the growth 
rate is zero. For wavenumbers lower than the critical 
wavenumber, the system is unstable, otherwise, stable. 
Since Eq. (21) becomes naturally zero when c  is zero, 
the critical equation cannot be obtained directly by 
substituting 0c =  into Eq. (21). Instead, the critical 
equation is asymptotically obtained. If the growth rate c  
is infinitesimally small but not-zero, Eq. (21) can be 
expressed using the Taylor series expansion with regard 
to c .  

 2 3( ) (0) (0) (0) / 2 ( ) 0V c V V c V c O c¢ ¢¢= + + + = . (22) 
Since (0) (0) 0V V ¢= = , for Eq. (22) to be satisfied for 
non-zero c , (0)V ¢¢  must be zero. As result, we obtain 
the critical equation as 
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 (23) 
The square bracket is always positive, since for 0a > ,

2cosh 2 2 1 0a a- - > ,  sinh 2 2 0a a- > , 1m ³ , and 
1r ³  . If there is no phase change ( 0b = ), we reach 

1/2
c Ba a= =  (dimensionally, 1/2( / )ck k gr s= = D ). 

The RHS of Eq. (23) is positive only for 1/20 Ba< < . If 
b  is small, there are two values of a  such that RHS 
equals b . The largest one is of physical importance. 
However, if b  is higher than the maximum value of 
RHS, there is no solution of Eq. (23) with regard to a . 
In this case, the system is stable for wall wavenumbers. 

For a thin layer of vapor, 1ka d=  is much smaller 
than unity. In this case, The RHS of (23) can be 
approximated using the Taylor series expansion with 
regard to a . As a result, we take 

 1 2 2 31(1 ) ( , )
3

B F O cb a a a-= - + .  (24) 

With dimensional variables, this equation is expressed as 
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This is the critical equation for a thin vapor layer. When 
there is no phase change ( 0b = ), Eq. (25) yields

1/2( / )ck gr s= D . If evaporation is so intensive that 
there is no solution for k  in Eq. (25), the interface is 
stable for all wavenumbers. It is interesting to note that 
there is no liquid viscosity effect in Eq. (25). This can be 
explained by the fact that as the vapor layer is thin to the 
extent of creeping flow, the vapor viscosity becomes 
dominant. 

On the other limit of a thick vapor layer ( 1a >> ), the 
hyperbolic functions are dominant over polynomials. 
Thus, Eq. (23) can be approximated as 
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Arranging this, 

 1 2tanh 2 12
tanh 2
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Since tanh 2 1a ®  as a ®¥ , the above equation can  
be written as 

 1 2( ) (1 )2 m r B rFa b a-+ = - .  (28) 
In a dimensional form, 

 2 1 2( )
0

2 kb gk n n r
s s
+ D

- =+ .  (29) 
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Unlike Eq. (25), both liquid and vapor viscosities appear 
in the critical equation. 

[3, 4] provided the critical equation for viscous fluids 
with equal kinematic viscosities and semi-infinite 
thicknesses. 

 2 4 0kb gk n r
s s

D
- =+ . (30) 

One can see that Eq. (29) immediately reduces to (30) 
when 1 2n n n= = . [3] claimed that the critical equation 
for a thin vapor layer was also given by Eq. (30). 
However, we found that there was error in deriving Eq. 
(30) for a thin vapor layer in [3]. If the error is corrected,  
the critical equation for a thin vapor layer becomes the 
same as Eq. (25). Consequently, the present critical 
equations are verified. 
 
 
2.3 Most unstable condition 

 
Figure 4 shows the variation of the most unstable 

wavelength dl  for saturated water-vapor at 150 bar. For 
thin vapor layers ( F  is small), the evaporation does not 
affect dl , while for thick vapor layers, the evaporation 
increases dl . 

To elucidate the behavior for thin vapor layers, the 
dispersion relation Eq. (31) is approximated using the 
Taylor series expansion to the second orders of F  and 
b . Then, we obtain 

As seen, the evaporation reduces always the growth rate. 
For 0b = , the growth rate becomes zero at  1/2Ba =  

(or 1/2( / )ck k gr s= = D ), and is maximized at 
1/2( / 2)Ba =  (or 1/2( / (2 ))dk k gr s= = D . It is of 

interest to examine the asymptotic behavior for 
extremely thin layers of vapor. By the Taylor series 
expansion of Eq. (32) with regard to 1 1ka d= << , 
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F
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The critical wavenumber is affected by b , whereas the 
most unstable wavenumber remains unchanged as 

1/2( / 2)d Ba = . 
Next, the most unstable condition for thick vapor 

layers without evaporation ( 0b = ) are examined. Figure 
5 show the most unstable wavelength as a function of the 
saturation pressure for water-vapor. crp  is the critical 

pressure. 1/2
c0 2 / ( / ( g))l p s r= D is the critical 

wavelength for inviscid flows without phase change. For 
low pressures ( 1m >>  and 1r >> ), the most unstable 

wavelength is very close to that by inviscid flows: 
1/ 2

0/ 3d cl l » . However, the deviation between the 
viscous and inviscid flow analyses becomes apparent as 
the saturation pressure approaches the critical pressure. 
In general, the inviscid flow analysis have been 
performed for thick vapor layers. Figure 5 indicates that 
this approximation is no longer applicable near the 
critical pressure. However, it is reasonable to use the 
inviscid flow approximation in the wide range of 
pressure. 
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Fig. 4 Effects of the evaporation on the most unstable 
wavelength 
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Fig. 5 Variation of dl  with the saturation pressure of water. 
The fluid layers are semi-infinite.  

 
 

3. Conclusions 
 

A linear stability analysis has been performed for the 
Rayleigh-Taylor instability of viscous fluids with phase 
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change. A semi-infinite layer of liquid superposed on a 
finite layer of vapor is considered. At the base flow, the 
direction of heat transfer is from vapor toward liquid. In 
this case, the phase change always reduces the growth 
rate. For a thin layer of vapor, the critical equation is  

4 2 1
3

1

3
0

bgk k nr
s sd

D
- + = . 

There is a coupled effect of the vapor viscosity, phase 
change, and vapor layer thickness on the critical 
wavenumber. For a very thick layer of vapor, the critical 
equation is 

2 1 2( )
0

2 kb gk n n r
s s
+ D

- =+ . 

The effect of the vapor layer thickness is weakened 
and both liquid and vapor viscosities affect the critical 
wavenumber. As to the most dangerous wavelength, for 
a thin layer of vapor, it is given by 1/2

0/ 2d cl l =  (or 
1/22 (2 / ( ))d gl p s r= D ), and is insensitive to the degree 

of phase change. However, for a thick layer of vapor, the 
most dangerous wavelength increases with the degree of 
phase change. 
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