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1. Introduction 

 
Various research groups challenged to develop 

efficient and fast 3-D whole-core transport calculation 
techniques for nuclear reactor analysis [1]. Monte Carlo 
method always has been available for this purpose but 
computational cost is a barrier up to these days. Use of 
the method of characteristics (MOC) is very popular 
due to its capability of heterogeneous geometry 
treatment and widely used for 2-D core calculation, but 
direct extension of MOC to 3-D core is not so attractive 
due to huge calculational cost.  

2-D/1-D fusion method [2,3] was very successful for 
3-D calculation of current generation reactor types 
(highly heterogeneous in radial direction but piece-wise 
homogeneous in axial direction).  

In this paper, 2-D MOC concept is extended to 3-D 
core calculation with little modification of an existing 2-
D MOC code. The key idea is to suppose 3-D geometry 
as a set of many 2-D planes like a phone-directory book. 
Dividing 3-D structure into a large number of 2-D 
planes and solving each plane with a simple 2-D SN 
transport method would give the solution of a 3-D 
structure.  

This method was developed independently at KAIST 
[4] but it is found that this concept is similar with that of 
‘plane tracing’ in the MCCG-3D code [5]. Besides the 
difference in details in implementation, the 
characteristic difference is in the 2-D SN transport solver 
that uses a hybrid approach of linear characteristics 
(LC) method in axial direction and diamond difference 
(DD) method in radial direction.  

The method developed was tested on the 3-D C5G7 
OECD/NEA benchmark problem and compared with 
the 2-D/1-D fusion method. Results show that the 
proposed method is worth investigating further.  

 
2. Method Basics 

 
The 3-D structure can be interpreted a set of 2-D plane 

structures. Usually a nuclear reactor core is very 
heterogeneous along radial direction but piece-wise 
homogeneous in axial direction.  

Main concept of this method is as follows: (i) Slicing 
the 3-D core along a set of characteristic planes as in 2-
D MOC calculation. Then we obtain each 2-D plane 
that is with rectangular mesh cells with heterogeneity. 
(ii) Solving this 2-D plane problem with a well-known 
2-D SN transport method is very straightforward. (iii) 

Summarizing (accumulating) these 2-D plane results 
become 3-D whole-core solution.  

 
2.1  2-D Plane Slicing of 3-D Core 

 
Based on this idea, we slice the 3-D core vertically 

along the characteristic plane. For example, consider 
four fuel pin problem as in Fig. 1(a).  

 
Fig. 1. Four-pin problem and its top view. 

 
Fig. 1(b) is the top view of this problem. Each cell is 

divided into fine mesh cells with few circles and radial 
lines. The red lines drawn vertically become 
characteristic planes along the discrete angle. The 
‘plane’ AB is chosen for the slicing plane. Fig. 2 is the 
cross section along this plane. This sliced sheet has 
rectangular mesh cells with various aspect ratios and 
material heterogeneity as shown.  

 

 
Fig. 2. Cross section along the slicing plane AB. 
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Slicing is successively done for every characteristic 

plane of equi-azimuthal angles. Then we have a set of 2-
D sliced sheets.  

 
2.2  2-D SN Transport Solver 
 

Once the formulation of the sheets is done, next step is 
to perform 2-D SN transport calculation for each plane.  

Since DD scheme can produce negative flux for 
optically thick region, this may lead to negative partial 
current at the interface which may harm convergence of 
the acceleration (p-CMFD) method. To avoid this 
situation, small mesh size must be maintained in both 
directions.  In this research, instead of using DD scheme, 
we formulate another scheme which uses linear 
characteristic (LC) scheme in axial direction and DD 
scheme in radial direction (LC/DD). Since LC scheme 
maintains accuracy and rarely produces negative flux, 
this approach allows us to use larger axial cell size.  

Neutron transport equation in rectangular mesh can be 
written as  

sin cos ( / 2),t z
d d Q T z L
dr dz

θ ψ θ ψ σ ψ+ + = + −    (1) 

where θ is a discrete polar angle, and Q is average 
source term. T is a gradient of the source in z direction. 
LR and LZ are cell size in radial and axial direction, 
respectively. We assumed the source term has linear 
distribution only in axial direction since the cell size is 
usually larger in axial direction. 

  

 
Fig. 3. Rectangular cell description 

 
For axial direction, by moving the leakage term in 

radial direction to the right hand side, Eq. (1) can be 
rewritten as,  

cos ( / 2) sin .t z
d dQ T z L
dz dr

θ ψ σ ψ θ ψ+ = + − −     (2) 

If we integrate Eq. (2) in radial direction assuming 
ψin,R, ψout,R are constant along axial direction, we obtain,  
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By solving Eq. (3), the outgoing angular flux in axial 
direction can be expressed as 
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Similarly, outgoing angular flux in radial direction 

can be written, using DD relation, as 
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Eq. (4) and Eq. (5) are 2 by 2 matrix equation with 

two unknowns of outgoing angular fluxes and can be 
solved easily. Once the matrix equation is solved, the 
cell average flux is obtained from neutron balance 
equation:  
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3. Numerical Results 
 

The Rotational Plane Slicing (RPS) method described 
above was tested on OECD/NEA 3D C5G7 benchmark 
problem [1]. This problem has three cases (Unrodded, 
Rodded A, Rodded B) according to the control rod 
position. We compared the results of the RPS method 
with 2D/1D fusion method solution. 

Fuel pin-cell is divided with 4 circles (0.33, 0.43, 0.55, 
0.6 cm) and 32 radial lines (12.5 degree interval) as 
described in Fig. 4. Reflector cell is divided with 8 by 8 
mesh grid. 

 

 
Fig. 4. Cell division for C5G7 pin cell/reflector cell. 

 
Axial cell size is 1.785cm resulting in 36 mesh cells in 

axial direction. Four polar angles and eight azimuthal 
angles are used for one octant. Since every cell at the 
same x-y position has to have the same mesh structure, 
reflector cells above the fuel region are also has the 
same geometric structure with fuel pin cell. 

Effective multiplication factors for each case are listed 
in Table I.  The RPS method gave fairly accurate results 
in terms of multiplication factor.  
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Table I: keff values for each case 

Case Unrodded Rodded A Rodded B 
MCNP (Ref.) 1.14308 

(±6pcm)* 
1.12806 

(±6pcm)* 
1.07777 

(±6pcm)* 
RPS Method 1.14291 

(-17pcm) 
1.12801 
(-5pcm) 

1.07766 
(-11pcm) 

2D/1D Fusion 
Method** 

1.14301 
(-6pcm) 

1.12819 
(11pcm) 

1.07785 
(7pcm) 

*98% confidence interval of the reference MCNP solution 
** Results from [6] 

 
The assembly power is compared and listed in 

Table II. The RPS method gives more accurate values 
for every case, but if we compare the power only in the 
third assembly slice (near top reflector), RPS method is 
little bit worse in Rodded A case.  

 
Table II: Percent error of assembly power 
Case  Unrodded Rodded A Rodded B 

MCNP 
(Ref.) 

Max. Pin 
 

Inner UO2 
 

MOX 
 

Outer UO2 
 

2.481 
(±0.14) 
491.15 
(±0.29) 
212.70 
(±0.21) 
139.46 
(±0.15) 

2.253 
(±0.14) 
461.18 
(±0.28) 
221.71 
(±0.22) 
151.39 
(±0.16) 

1.835 
(±0.19) 
395.43 
(±0.26) 
236.62 
(±0.23) 
187.34 
(±0.18) 

RPS Max. Pin 
Inner UO2 

MOX 
Outer UO2 

0.002 
-0.013 
-0.002 
0.053 

-0.074 
-0.005 
-0.001 
0.019 

0.012 
0.006 
-0.007 
0.003 

2D/1D Max. Pin 
Inner UO2 

MOX 
Outer UO2 

-0.31 
-0.27 
0.20 
0.34 

-0.38 
-0.28 
0.19 
0.29 

-0.41 
-0.36 
0.19 
0.34 

 
Table III. Percent error of power in 3rd assembly slice 
Case  Unrodded Rodded A Rodded B 

MCNP 
(Ref.) 

Max. Pin 
 

Inner UO2 
 

MOX 
 

Outer UO2 

0.491 
(±0.30) 
97.90 

(±0.13) 
42.88 

(±0.10) 
27.79 

(±0.07) 

0.304 
(±0.47) 
56.26 

(±0.09) 
39.23 

(±0.09) 
28.21 

(±0.07) 

0.217 
(±0.56) 
41.12 

(±0.08) 
29.42 

(±0.08) 
30.68 

(±0.07) 
RPS Max. Pin 

Inner UO2 
MOX 

Outer UO2 

-0.249 
-0.038 
-0.094 
-0.088 

0.230 
-0.103 
-0.192 
-0.101 

-0.606 
-0.214 
-0.156 
0.026 

2D/1D Max. Pin 
Inner UO2 

MOX 
Outer UO2 

-0.69 
-0.41 
-0.03 
0.12 

-0.02 
-0.35 
0.12 
0.27 

-1.41 
-0.77 
0.20 
0.39 

 
 
 
 

The results of 2D/1D fusion method are given from a 
separate code which is developed independently [6]. 
Therefore, the comparison of the computing time has 
little meaning and not given here. It is obvious that the 
RPS method requires more computational effort than 
the 2D/1D fusion method. Approximately 12 hours are 
taken for the RPS method (36 axial planes, 4 polar 
angles) with 12 cores, whereas around 3 hours are taken 
for the 2D/1D fusion method (12 axial planes, 2 polar 
angles) in the same computer system (Intel Xeon 
X5670@2.93GHz ×2).  

 
4. Conclusions 

 
A new approach to 3-D whole-core transport 

calculation is described and tested. By slicing 3-D 
structure along characteristic planes and solving each  
2-D plane problem, we can get 3-D solution. The 
numerical test results indicate that the new method is 
comparable with the 2D/1D fusion method and 
outperforms other existing methods. But more fair 
comparison should be done in similar discretization 
level. As a concluding remark, there are rooms for 
further research to improve the efficiency.  
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