
Transactions of the Korean Nuclear Society Autumn Meeting 
Pyeongchang, Korea, October 30-31, 2014 

 
 

Considerations for Deciding Data Verifying Methods  
of the Nuclear Power Safety-Related Controller 

 
Taehee Kim a, Sung Jae Hwang a and Donghwa Yuna 

aResearch and Development Center, POSCO Nuclear Technology, Seoul, Korea 
 

1. Abstract 
 

Unintentional changes of data in memory should be 
treated as one of the most significant errors in nuclear 
power safety-related controller. So far, several data 
verifying methods are proposed, but they should be 
carefully applied according to data and hardware 
characteristics. In this paper, existing data verifying 
methods are shown and then we describe how they can 
be applied in nuclear power safety-related controller. 

 
2. Introduction 

 
Nuclear Power Safety-Related Controller (NPSC) is 

one of the most important components of 
instrumentation and control (I&C) systems in nuclear 
power plant. The safety guarantee activities such as 
protection, control, supervision and monitoring of 
nuclear power plant are performed by NPSC. Therefore, 
NPSC is designed to withstand or tolerate the errors 
caused by various events. 

However, some errors should be detected and 
managed carefully as serious errors. One of those 
significant errors is unintentional changes of data, 
namely damaged date in memory. If system data such as 
instructions and variables referenced by system data are 
changed unintentionally, NPSC may become 
unpredictable. In the worst case, damaged data can shut 
NPSC down if the shut down bit is damaged and not 
detected before it is referenced. 

Although data verification is essential task of NPSC, 
it needs resources such as CPU execution time shared 
by I&C task that is main purpose of NPSC. The more 
time is assigned on data verification, the less time is 
assigned on I&C. Therefore, data verifying process 
should be designed to minimize the effects on I&C and 
detect damaged data quickly and accurately. To achieve 
these design goals, CPU execution time, hardware 
complexity and reliability should be considered. 

In this paper, we investigate considerations for 
deciding data verifying methods and then show the 
example board reflecting those considerations. 

 
3. Related Works 

 
3.1 Existing Data Verifying Methods 

 
Mirroring [1] is a typical data verifying method that 

employs multiple memories for data redundancy. In 
mirroring, multiple memories store identical datum at 
same address as shown in Fig. 1. When CPU read 

certain memory address, a hardware called comparator 
reads that address from multiple memories and 
compares the each read data. If the data are identical, 
they will be forwarded to CPU, while the data will be 
considered as damaged data if they are different. 
Because data are compared at a hardware level, 
mirroring is real-time fast and does not consume CPU 
execution time. On the other hand, addition of hardware 
such as comparator and multiple memories may increase 
a failure rate of NPSC.  

Checksum [2][3] and CRC [4] can be considered as 
data verifying methods. They are proposed to be used in 
network communication but they are also effective as 
data verifying methods. All data value is added at every 
address of memories and the result namely sum is stored 
at specific location, typically the last address as shown 
in Fig. 2. When NPSC want to verify data, the addition 
is re-performed and the sum is compared to the 
previously stored sum. If they are identical, NPSC can 
trust the memories do not contain any damaged datum 
while they are different, there exists one or more 
damaged datum. CRC is basically similar with 
checksum, although they employ different 
methodologies. Checksum and CRC investigate whole 
memory addresses and then derive an outcome. 
Whenever CPU wants to verify data, the outcome is 

 
Fig. 1. Mirroring example 

 
Fig. 2. Checksum example 



Transactions of the Korean Nuclear Society Autumn Meeting 
Pyeongchang, Korea, October 30-31, 2014 

 
derived again and compared with previous outcome. 
Whole memory investigation may be significant 
overhead but it can be achieved by software without 
hardware support. Simplicity of hardware may cause not 
only low cost but also high reliability. 

 
3.2 Data Characteristics 

 
As a kind of embedded system, NPSC stores 

compiled data in memory. Compiled data are classified 
as several sections. For example, when we compile data 
by well-known Code Composer Studio (CCS) [5], we 
may get “.text”, “.switch”, “.const”, “.cinit”, “.far”, 
“.cio”, “.stack”, “.bss”, etc. These sections can be 
classified as initialized and uninitialized sections by 
their data consistency.  

In initialized sections, every address of the sections is 
set to certain initial values whenever NPSC is booted up. 
The representative data of initialized sections are 
constant variables. The constant variables may be 
declared in “const” keyword in most compilers. They 
are set to designated values by programmer at 
initialization and cannot be changed. Instructions such 
as “add”, “div” and “mul” are also representative data 
located in initialized sections. If instructions are 
compiled and located in memory, they are not changed 
by any events except damage on memory. 

Uninitialized sections, however, do not have initial 
value and can be changed at run time. Stacks and most 
variables are located in uninitialized sections. 

 
3.3 Memory Hardware 

 
NPSC commonly adopts hybrid memory structure 

consisted of synchronous static ram (SRAM), flash 
memory, etc. SRAM and flash memory can be 
categorized as several types such as dual port ram 
(DPRAM), NOR and NAND flash memory is well-
known types. 

Generic SRAM has a few megabytes capacity and a 
few nanoseconds access speed. It is one of the fastest 
memory types, thus it is suitable for data needing 
frequent access such as instructions. However, SRAM 
cannot maintain data without continuous power supply. 
In other words, it is volatile. 

Flash memory can maintain hundreds of megabytes or 
a few gigabytes data after power down. But flash 
memory has relatively slow access speed of decades of 
nanoseconds. NOR flash memory can be read by 
random addresses but write by an unit called sector 
while NAND flash memory read and write by and unit 
called block. NAND is disadvantageous in terms of 
memory access, they has bigger capacity than NOR. 

 
4. Deciding Memory Verifying Method 

 
In this section, we investigate deciding actual data 

verifying methods on the basis of related works by 

proposing a board in shown in figure. The proposed 
board is consists of 4 memory modules. 

 
4.1 The Proposed Board 

 
First module is NOR flash memory. It is used for boot 

loader, that is system data those are need for boot and 
initialization. In general, CPUs for embedded system 
require NOR flash memory for boot loader because it is 
non-volatile and can be read by random access. As we 
mentioned above, NOR flash memory has smaller 
capacity than NAND flash memory, but it is enough for 
boot loader of typical a few kilobytes. 

Second module is NAND flash memory. It is used for 
the rest system data excluding boot loader. In other 
words, NOR and NAND flash memory are correspond 
with above mentioned initialized sections. Data belongs 
to initialized section are not changed, so slow access 
speed of flash memory cannot be a significant drawback.  

Third module is generic SRAM. It is used for the 
execution space of initialized sections stored in flash 
memory. Flash memory is generally slow and need 
sequential access of memory addresses, therefore, it is 
not suitable for frequent memory access such as actual 
execution. The data of first and second modules are 
copied to this SRAM module when NPSC is booted up, 
and then actual access for execution is occurred in the 
module. 

Fourth module is also generic SRAM memory This 
module is correspond with uninitialized sections.  

 
4.2 Deciding Data Verifying Methods 
 

For the first and second module, namely NOR and 
NAND flash memory respectively, we hire checksum or 
CRC. Basically, the outcome of checksum and CRC is 
re-derived whenever any datum in the memory is 
changed. Furthermore, the outcome also should be re-
derived for the every data verifications for comparing. 
The outcome re-derivation needs whole memory 
investigation and thus consumes significant CPU 
execution time. However, data on flash memories are 
copied to third module, that is generic SRAM, after 
boot and initialization. It means that data in first and 
second module will not be accessed except boot and 
initialization. As a result, whole memory investigation is 
occurred just one time and this is affordable to most 

 
 
Fig. 3. The Proposed Board 



Transactions of the Korean Nuclear Society Autumn Meeting 
Pyeongchang, Korea, October 30-31, 2014 

 
NPSC.  

Mirroring, checksum and CRC can be applied to third 
generic SRAM module. All data of the module is from 
flash memories, and thus they will not be changed. 
However, data of initialized sections should be accessed 
fast for actual execution because they are system data. 
As a result we adopt mirroring for third generic SRAM 
module. One more reason for choosing mirroring is that 
some part of verifying software itself is located in the 
module if we apply checksum or CRC. We cannot trust 
data verifying result, if the result is derived by software 
on the verifying target. 

 Forth module, that is generic SRAM, is applied with 
mirroring in the proposed board. Data of the module is 
changeable. They belong to uninitialized sections, and 
thus checksum and CRC should be avoided. The reason 
for we split third and forth module although they are 
both SRAM and share mirroring as data verifying 
methods is expandability. We assume that the proposed 
board could be expanded to dualization. In the 
dualization, two boards should be connected to each 
other and share their calculation result. For such sharing 
purpose, generic SRAM that stores variables may be 
replaced to DPRAM. To be prepared for that 
replacement, we split third and forth module.  

 
5. Conclusions 

 
In this paper, we investigated memory verifying 

methods according to data and hardware characteristics. 
A board that reflects the characteristics and adopts 
various data verifying methods was proposed. We will 
investigate numerical aspects such as actual access and 
verifying speed of the methods in the future. 
 

REFERENCES 
 

[1] R. W. Hamming, Error Detecting and Error Correcting 
Codes, Bell Sys. Tech. Journal, Vol. 29, pp. 147-160, 1950. 
[2] J. G. Fletcher, An Arithmetic Checksum for Serial 
Transmissions, IEEE Transactions on Communications, vol. 
COM-30, no. 1, pp. 247-252, 1982. 
[3] P. Deutsch and J.-L. Gailly, ZLIB Compressed data format 
specification version 3.3, Network Working Group Request 
for Comments (RFC) 1950, 1996. 
[4] A. B. Marton and T. K. Frambs, A Cyclic Redundancy 
Checking (CRC) Algorithm, The Honeywell Computer 
Journal, Vol. 5, No. 3, 1971. 
[5] Code Composer Studio v5, Texas Instrument, 
http://processors.wiki.ti.com/index.php/Category:Code_Comp
oser_Studio_v5, 2014 

http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5�
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5�

