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1. Introduction 

 

To overcome slow source convergence in the whole-

core transport calculation, many acceleration methods 

have been proposed over the past decades in the case of 

deterministic calculation. Coarse-Mesh Finite Difference 

(CMFD) method is a well-known acceleration method 

which was originally proposed with MOC calculation [1]. 

As an alternative to the CMFD method, partial 

current-based CMFD (p-CMFD) which is more 

physically based than CMFD was proposed [2,3]. It 

shows significant improvement over the CMFD method 

in acceleration in terms of convergence and stability [4,5]. 

Also, the p-CMFD method effectively accelerates source 

convergence of fission source distributions in 

continuous-energy MC calculation [6,7]. The readers are 

advised to refer to Ref. 7 for its comparison with other 

acceleration methods. 

In Ref. 2, a variant of the p-CMFD method was also 

suggested. The variant includes an additional surface 

flux term to express partial current in the ‘closure’ 

relation (see Eq. (1) below). Recently, this variant of the 

p-CMFD method is studied in acceleration of Monte 

Carlo calculation [8]. 

In this paper, some variations of the p-CMFD method 

are investigated and applied to accelerate source 

convergence of continuous-energy MC calculation, and 

their performances are assessed. 

 

2. Variations of p-CMFD 

 

2.1 Variation 1 

 

To describe the variant of p-CMFD acceleration 

method [2], let us consider coarse-mesh cell i and i+1. At 

the right interface i+1/2 of cell i, the outgoing and 

incoming partial currents are related with cell-average 

scalar fluxes and surface scalar flux at the interface as: 
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where , 1/2G iD   is arbitrary but usually chosen as 

coupling coefficient determined in the finite difference 

method, and the two correction factors , 1/2
ˆ

G iD
  and 

, 1/2
ˆ

G iD
  are defined to preserve respective partial 

currents as: 
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where the partial currents, cell-average fluxes, and 

surface-average flux are obtained from the high-order 

transport calculation. Although there is the additional 

surface flux term in Eq. (1) compared to the original p-

CMFD, the net current in the variant is same with that of 

the original p-CMFD as: 
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When Fourier convergence analysis in deterministic 

calculation setting was performed for Variation 1, the 

results became similar to those of CMFD, thus it was not 

pursued further. When the high-order equation is solved 

by MC calculation, tally of the surface flux is ill-posed 

and thus implementation of Variation 1 would be 

problematic. Therefore, we consider in this study the 

following variation. 

 

2.2 Variation 2 

 

To get around the surface flux, the following relation 

from P1 approximation is used: 
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By substituting Eq. (4) into Eq. (2), the two correction 

factors are then expressed as: 
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Eq. (5) turns out that the formulation is very close to 

, 1/2
ˆ

G iD   in the CMFD method. The numerators in Eq. (5) 

are exactly the same with that of the CMFD method, 

while the denominators are a little bit different  

, , , 1 , 1 , , 1(2   and  2 ,  andG i G i G i G i G i G i          

, 1/2 , 1/2
ˆ ˆthus  in the CMFD method)G i G iD D 

  . 
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2.3 ‘Generalization’ of Variation 2 

 

By introducing an arbitrary factor  into Eq. (5), 

Variation 2 may be generalized as: 
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Note that when 0  , Eq. (6) becomes the correction 

factors of the original p-CMFD method. On the other 

hand, when 1  (Variation 2), it becomes close to 

, 1/2
ˆ

G iD   of the CMFD method as noted above. By 

varying  , a number variations can be produced. In 

numerical results, these variations will be compared in 

the context of acceleration of source convergence of 

continuous-energy MC calculation. 

 

3. Numerical Results 

 

A 1-D test problem shown in Fig. 1 is solved by 

continuous-energy MC calculation using McSLAB [9] 

and source convergence is accelerated by several 

variants ( 100,  1,  0, 0.5,  0.7, and 1)     of one-

group p-CMFD method with two coarse-mesh cells per 

assembly. For each MC cycle, 52 10  histories are used 

and initial fission source distribution is set as uniform. 

MC tallies for p-CMFD parameters are accumulated 

after first 10 cycles to stabilize fission source fluctuations 

[7].  

 
 

 
Fig. 1. 1-D thermal reactor test problem 

 

To compare effectiveness of the variant methods, the 

sample means and sample standard deviations of 

Shannon entropy [10] for each cycle are obtained by 30 

independent batch runs, as shown in Figs. 2 and 3. The 

reference Shannon entropy is obtained from the 30 

independent batch runs of conventional MC calculation 

consisting of 200 inactive cycles and 50 active cycles. 

Figs. 2 and 3 show the results as  varies from 

100 (a large negative value)  to 0.7. As   decreases 

from 0 to 100 , slower convergence but smaller sample 

standard deviations of Shannon entropy are observed. 

When  is set to 100 , the sample mean and sample 

standard devations of Shannon entropy become close to 

those of the conventional power iteration. On the other 

hand, as     increases from 0 to 0.7, faster convergence 

but larger sample standard deviations of Shannon 

entropy are observed. If 0  , it is the original p-CMFD 

and it shows “best” performance in terms of convergence 

speed and standard deviation.  

 
Fig. 2. The sample means of Shannon entropy for each 

acceleration method. 

 

 
Fig. 3. The sample standard deviations of Shannon entropy for 

each acceleration method 

 

Note that for 1  , the high-order and low-order 

iteration becomes unstable and fails to converge perhaps 

due to negative scalar flux from low-order calculation 

(not shown in the figures).  

 

4. Summary and Conclusions 

 

In this paper, the variant of p-CMFD method [2] is 

revisited and modified by the P1 approximation to 

replace the surface flux with total current for robust tally 

in MC calculation. This modified variant of p-CMFD 

method is generalized by multiplying an arbitrary factor 

   to the total current. 

For a 1-D continuous-energy thermal reactor problem, 

variants of p-CMFD method are compared for several

's . Note that for the 1   case (of which Fourier 
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convergence analysis in deterministic calculation shows 

almost same characteristics with that of CMFD method), 

the variant p-CMFD method fails to converge due to 

negative scalar flux from low-order calculation.  

In conclusion, compared to several variants of p-

CMFD, the original p-CMFD method ( 0 case)   is an 

‘optimizer’ for continuous-energy MC calculation in 

terms of acceleration speed and source fluctuation.  

As a further remark, preliminary results on 2-D 

problems support the same conclusions obtained in the 

1-D problem above. 
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