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1. Introduction

To overcome slow source convergence in the whole-
core transport calculation, many acceleration methods
have been proposed over the past decades in the case of
deterministic calculation. Coarse-Mesh Finite Difference
(CMFD) method is a well-known acceleration method

which was originally proposed with MOC calculation [1].

As an alternative to the CMFD method, partial
current-based CMFD (p-CMFD) which is more
physically based than CMFD was proposed [2,3]. It
shows significant improvement over the CMFD method

in acceleration in terms of convergence and stability [4,5].

Also, the p-CMFD method effectively accelerates source
convergence of fission source distributions in
continuous-energy MC calculation [6,7]. The readers are
advised to refer to Ref. 7 for its comparison with other
acceleration methods.

In Ref. 2, a variant of the p-CMFD method was also
suggested. The variant includes an additional surface
flux term to express partial current in the ‘closure’
relation (see Eq. (1) below). Recently, this variant of the
p-CMFD method is studied in acceleration of Monte
Carlo calculation [8].

In this paper, some variations of the p-CMFD method
are investigated and applied to accelerate source
convergence of continuous-energy MC calculation, and
their performances are assessed.

2. Variations of p-CMFD
2.1 Variation 1

To describe the variant of p-CMFD acceleration
method [2], let us consider coarse-mesh cell i and i+1. At
the right interface i+1/2 of cell i, the outgoing and
incoming partial currents are related with cell-average
scalar fluxes and surface scalar flux at the interface as:
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where 156'”1,2 is arbitrary but usually chosen as
coupling coefficient determined in the finite difference
method, and the two correction factors '55,i+1/2 and

f)g’m,z are defined to preserve respective partial
currents as:
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where the partial currents, cell-average fluxes, and
surface-average flux are obtained from the high-order
transport calculation. Although there is the additional
surface flux term in Eq. (1) compared to the original p-
CMEFD, the net current in the variant is same with that of
the original p-CMFD as:
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When Fourier convergence analysis in deterministic
calculation setting was performed for Variation 1, the
results became similar to those of CMFD, thus it was not
pursued further. When the high-order equation is solved
by MC calculation, tally of the surface flux is ill-posed
and thus implementation of Variation 1 would be

problematic. Therefore, we consider in this study the
following variation.

)

2.2 Variation 2

To get around the surface flux, the following relation
from P approximation is used:
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By substituting Eq. (4) into Eq. (2), the two correction
factors are then expressed as:
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Eqg. (5) turns out that the formulation is very close to
I:A)G’Hl,2 in the CMFD method. The numerators in Eg. (5)

are exactly the same with that of the CMFD method,
while the denominators are a little bit different

(Zae,i —>ge,i +§ZG,i+l and Z(ZG,M —N/;G,i +$G,i+lv and
thus D i.1/» = Dg .y in the CMFD method).
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2.3 ‘Generalization’ of Variation 2

By introducing an arbitrary factor « into Eq. (5),
Variation 2 may be generalized as:
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Note that when « =0, Eq. (6) becomes the correction
factors of the original p-CMFD method. On the other
hand, when « =1 (Variation 2), it becomes close to

|jG,i+1/2 of the CMFD method as noted above. By

varying « , a number variations can be produced. In
numerical results, these variations will be compared in
the context of acceleration of source convergence of
continuous-energy MC calculation.

, (6b)

3. Numerical Results

A 1-D test problem shown in Fig. 1 is solved by
continuous-energy MC calculation using McSLAB [9]
and source convergence is accelerated by several
variants (a¢=-100, -1, 0, 0.5, 0.7,and 1) of one-
group p-CMFD method with two coarse-mesh cells per
assembly. For each MC cycle, 2x10° histories are used
and initial fission source distribution is set as uniform.
MC tallies for p-CMFD parameters are accumulated
after first 10 cycles to stabilize fission source fluctuations
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Fig. 1. 1-D thermal reactor test problem

To compare effectiveness of the variant methods, the
sample means and sample standard deviations of
Shannon entropy [10] for each cycle are obtained by 30
independent batch runs, as shown in Figs. 2 and 3. The
reference Shannon entropy is obtained from the 30
independent batch runs of conventional MC calculation
consisting of 200 inactive cycles and 50 active cycles.

Figs. 2 and 3 show the results as « varies from
—100 (a large negative value) to 0.7. As o decreases

from 0 to —100, slower convergence but smaller sample
standard deviations of Shannon entropy are observed.
When « is set to —100, the sample mean and sample
standard devations of Shannon entropy become close to
those of the conventional power iteration. On the other

hand, as « increases from 0 to 0.7, faster convergence
but larger sample standard deviations of Shannon
entropy are observed. If « =0, itisthe original p-CMFD
and it shows “best” performance in terms of convergence
speed and standard deviation.
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Fig. 2. The sample means of Shannon entropy for each
acceleration method.
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Fig. 3. The sample standard deviations of Shannon entropy for
each acceleration method

Note that for « =1, the high-order and low-order
iteration becomes unstable and fails to converge perhaps
due to negative scalar flux from low-order calculation
(not shown in the figures).

4. Summary and Conclusions

In this paper, the variant of p-CMFD method [2] is
revisited and modified by the P; approximation to
replace the surface flux with total current for robust tally
in MC calculation. This modified variant of p-CMFD
method is generalized by multiplying an arbitrary factor
o to the total current.

For a 1-D continuous-energy thermal reactor problem,
variants of p-CMFD method are compared for several
a's . Note that for the « =1 case (of which Fourier
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convergence analysis in deterministic calculation shows
almost same characteristics with that of CMFD method),
the variant p-CMFD method fails to converge due to
negative scalar flux from low-order calculation.

In conclusion, compared to several variants of p-
CMFD, the original p-CMFD method (« =0 case) is an

‘optimizer’ for continuous-energy MC calculation in
terms of acceleration speed and source fluctuation.

As a further remark, preliminary results on 2-D
problems support the same conclusions obtained in the
1-D problem above.

References

[1] K.S. Smith and J.D. Rhodes, I1l, "CASMO Characteristics
Method for Two-Dimensional PWR and BWR Core
Calculation,” Trans. Am. Nucl. Soc., 83, 294 (2000).

[2] N.Z. Cho et al., "On a New Acceleration Method for 3D
Whole-Core Transport Calculations,” Proc. 2003 Annual
Meeting of the Atomic Energy Society of Japan, Volume I,

pp.14-15, March 27-29 , 2003, Sasebo, Japan:
http://nurapt.kaist.ac.kr/NurapT-Archives/N.Z.Cho.2003.AES
J.pdf.

[3] N.Z. Cho et al., "Partial Current-Based CMFD Acceleration
of the 2D/1D Fusion Method for 3D Whole-Core Transport
Calculations,” Trans. Am. Nucl. Soc., 88, 594 (2003).

[4] N.Z. Cho and G.S. Lee, "Comparison of CMFD and p-
CMFD Acceleration Methods for Neutron Transport
Calculations,”" Trans. 2003 Kor. Nuc. Soc. Spring Meeting,
Gyeongju, Korea, May, 2003.

[5] N.Z. Cho, "The Partial Current-Based CMFD (p-CMFD)
Method Revisited," Proc. 2012 Kor. Nucl. Soc. Autumn
Meeting, Gyeongju, Korea, October 25-26, 2012:
http://www.kns.org/kns_files/kns/file/229%C1%B6%B3%B2
%C1%F8.pdf.

[6]S. Yunand N.Z. Cho, "Acceleration of Source Convergence
in Monte Carlo k-Eigenvalue Problem via Anchoring with a p-
CMFD Deterministic Method," Ann. Nucl. Energy, 37, 1649-
1658 (2010).

[7] Y.G. Jo and N.Z. Cho, "Stabilization of Monte Carlo
Fission Source Distribution in p-CMFD Acceleration Method
Compared to Fission Matrix Method," Trans. Am. Nucl. Soc.,
110, 531 (2014).

[8] M. Ellis, Massachusetts Institute of Technology (MIT),
private communications (July 2014).

[9] Y.G. Jo, "McSLAB - A Continuous-Energy Monte Carlo
Code for Neutronics Analysis in Multi-Slab Geometry," Korea
Advanced Institute of Science and Technology (KAIST), in
progress.

[10] F. B. Brown, "On the use of Shannon entropy of the fission
distribution for assessing convergence of Monte Carlo
criticality calculations,” PHYSOR 2006, Vancouver, BC,
Canada (2006).



http://nurapt.kaist.ac.kr/NurapT-Archives/N.Z.Cho.2003.AESJ.pdf
http://nurapt.kaist.ac.kr/NurapT-Archives/N.Z.Cho.2003.AESJ.pdf
http://www.kns.org/kns_files/kns/file/229%C1%B6%B3%B2%C1%F8.pdf
http://www.kns.org/kns_files/kns/file/229%C1%B6%B3%B2%C1%F8.pdf

