Definition of Nuclear Material in Aspects of Nuclear Nonproliferation and Security

Jihye Jeon^{*}, Chansuh Lee,

Korea Institute of Nuclear Nonproliferation and Control, Executive Coordination Div., Yusungdae-ro 1534, Yusung-gu, Daejeon, Korea, 305-348 *Corresponding author: jeon4756@kinac.re.kr

1. Introduction

In tandem with worldwide growing nuclear energy industry as well as serious accidents and threat at nuclear power plants in recent years, nuclear safety and security have become most important issues ever in nuclear history. After Fukushima accident in 2011, nuclear safety has been one of the priorities among countries with nuclear energy. Nevertheless, nuclear security is easy to be overlooked due to its different target.

This phenomenon results from the different features of nuclear safety and security: Nuclear safety protects human from nuclear material while nuclear security guards the material from human. Therefore, nuclear safety accidents directly affect human health but nuclear security incidents indirectly influence human, which demonstrates the reason why security receives less attention.

However, it is acknowledged that nuclear terrorism is indeed one of the most dreadful threat humanity faces. As part of strengthening nuclear security as well as nonproliferation to response to the threat, we need a better understanding of the nuclear material which needs to be safe under the objective of nuclear security.

In reality, practitioners implement safeguards and physical protection in compliance with the regulation text in domestic legislation. Thus, it is important to specify nuclear material clearly in law for effective implementation.

Therefore, the definition of terminology related to nuclear material is explored herein, within the highestlevel legislation on the safeguards and physical protection. First the definition in Korean legislation is analyzed. Then, so as to suggest some improvements, other international efforts are examined and some case studies are conducted on other states which have similar level of nuclear technology and industry to Korea.

Finally, a draft of definition on nuclear material in perspective of nuclear nonproliferation and security is suggested based on the analysis below.

2. The Definitions in Korean Legislation

Table I: The Definitions	in Korean	legislation
--------------------------	-----------	-------------

Provided	Definition Text	Definition Text of
Term	of Act	Presidential Decree
Nuclear	Nuclear fuel	
materials	materials and	-

(NSA)	nuclear raw	
Nuclear fuel materials (NSA)	materials; Materials capable of producing nuclear energy, such as uranium and thorium, as prescribed by <u>Presidential</u> <u>Decree;</u>	 Uranium with same ratio of the isotope 235 to isotope 238 as the ratio occurring in nature and its compounds Uranium with lower ratio of the isotope 235 to isotope 238 than the ratio occurring in nature and its compounds Thorium and its compounds Materials containing at least one material specified in 1~3, which can be used as fuel for reactors Uranium with higher ratio of the isotope 235 to isotope 238 than the ratio occurring in nature and its compounds Putonium and its compounds Plutonium and its compounds Materials containing at least one material specified in 1x
Nuclear raw materials (NSA)	Uranium ore, thorium ore, and other materials used as raw materials for nuclear fuel materials, as prescribed by <u>Presidential</u> Decree;	Materials containing uranium and its compounds, and thorium and its compounds excluding the "nuclear fuel materials"
Nuclear materials (APPRE)	Materials capable of producing nuclear energy, such as uranium and thorium and uranium ore, thorium ore, and other materials used as raw materials for nuclear fuel materials, as prescribed by <u>Presidential</u> <u>Decree;</u>	 Uranium 233 and its compounds Uranium 235 and its compounds Thorium and its compounds Plutonium (except that with isotopic concentration exceeding 80 percent in plutonium-238) and its compounds Materials containing at least one material specified in paragraph 1~4 Materials containing uranium and its compounds,

	or thorium and its	
	compounds besides 1~5	

In Korea, definition on nuclear material is stated in Nuclear Safety Act (NSA) [1] and Enforcement Decree of the Nuclear Safety Act [2]. Despite of the title of the Act, it stipulates safeguards of nuclear material as well as safety regulation. Physical protection measures are imposed in Act on Physical Protection and Radiological Emergency (APPRE) [3] and nuclear material is somewhat defined differently from the NSA.

In the NSA, classifying nuclear material as nuclear fuel materials and nuclear raw materials seems to reflect the perspective of nuclear safety and radiation. The difference between fuel material and raw material is whether it poses any radiological harm on human health. In this context, the fuel material is of concern in nuclear safety due to its radioactivity, not the raw material.

Still, the definition of 'nuclear fuel material' raises some questions on effectiveness of the definition. It separates uranium depending on the degree of enrichment of uranium. Perhaps, it might want to mention enriched uranium, natural uranium, and depleted uranium. However, this separation seems meaningless in that all are in the same category of nuclear fuel materials.

The definition in APPRE seems more reasonable that the target of physical protection is rather clearly specified in the definition. Despite of its clarity, it still needs to be prioritized presented nuclear material: e.g. it is evident that enriched uranium fuel for light water reactor and uranium ore do not require the same level of physical protection measures.

Current definition of nuclear material in Korean legislation seems to be not adequate to elaborate the material in the sense of nuclear security. Not the radiation, how easily the material can be used to develop nuclear weapon is of importance in nuclear nonproliferation and nuclear security. In these context, there are several features of nuclear material needed to be considered; quantity, concentration, physical and chemical form, isotopic composition, irradiation status and quality. Inter alia, material type, which includes element contained and the degree of enrichment according to IAEA Safeguards Glossary [4] might be the one of most important factors to consider.

3. Other Definitions of Nuclear Material

3.1 Definitions in International Regime

Table II: Definitions in International Regime

Regime	Term	Definition Text
•IAEA Statute •CSA	Special fission- able	1. The term "special fissionable material" means plutonium-239; uranium- 233; uranium enriched in
•AP	material	the isotopes 235 or 233; any material containing one or more of

		 the foregoing; and such other fissionable material as the Board of Governors shall from time to time determine; but the term "special fissionable material" does not include source material. 2. The term "uranium enriched in the isotopes 235 or 233" means uranium containing the isotopes 235 or 233 or both in an amount such that the abundance ratio of the
		sum of these isotopes to the isotope 238 is greater than the ratio of the isotope 235 to the isotope 238 occurring in nature.
		3. The term "source material" means uranium containing the mixture of isotopes occurring in nature; uranium depleted in the isotope 235; thorium; any of the foregoing in the form of metal, alloy, chemical compound, or concentrate; any other material containing one or more of the foregoing in such concentration as the Board of Governors shall from time to time determine; and such other material as the Board of Governors shall from time to time determine.
•ICSANT •CPPNM	Nuclear material	"Nuclear material" means plutonium, except that with isotopic concentration exceeding 80 percent in plutonium-238; uranium-233; uranium enriched in the isotope 235 or 233; uranium containing the mixture of isotopes as occurring in nature other than in the form of ore or ore residue; or any material containing one or more of the foregoing;
		Whereby "uranium enriched in the isotope 235 or 233" means uranium containing the isotope 235 or 233 or both in an amount such that the abundance ratio of the sum of these isotopes to the isotope 238 is greater than the ratio of the isotope 235 to the isotope 238 occurring in nature.
INFCIRC /225 /Rev.5	Nuclear material	 Unirradiated* plutonium (All plutonium except that with isotopic concentration exceeding 80% in plutonium-238) Unirradiated* uranium-235 Unirradiated* uranium-233 Irradiated fuel
		*Material not irradiated in a reactor or material irradiated in a reactor but with a radiation level equal to

	or less than 1 Gy/h. (100rad/h) at 1m unshielded.

The IAEA Statute [5], IAEA INFCIRC/153 (so called Comprehensive Safeguards Agreement, CSA) [6], and INFCIRC/540(so called Additional Protocol, AP) [7] focus on special fissionable material. It does not clarify how much amount of these isotopes should be contained in a certain material.

In the document of the UN's International Convention for the Suppression of Acts of Nuclear Terrorism (ICSANT) [8] and the IAEA's Convention of the Physical Protection of Nuclear Material (CPPNM) [9], nuclear material includes natural uranium and excludes plutonium with isotopic concentration exceeding 80 percent in plutonium-238 but still focusing on the special fissionable material aforementioned.

The difference between the former and the latter definition might be the terminology and the scope of plutonium. The former only mentioned 'plutonium-239' while the latter specified 'plutonium, except that with isotopic concentration exceeding 80 percent in plutonium-238.' There might be a conflict, provided a plutonium compounds with 19% of plutonium-239 and 81% of plutonium-238. The former might (or might not, since there is no specified amount of material to be controlled) control the compound, whereas the latter will not.

Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225) [10], published by the IAEA, is one of the most widely accepted documents among its member states. Many countries, including Korea, have implemented physical protection measures according to the Recommendation. The approach of IAEA Recommendation on Physical Protection for nuclear material is rather unique. The irradiation status is focused without isotopic composition. Furthermore, it classified nuclear material as 3 categories in terms of its quantity to enable graded approach for physical protection measures. However, the type of material is somewhat limited to special fissionable material.

The international regime on nuclear security such as ICSANT, CPPNM, and INFCIRC/225/Rev.5 suggest what nuclear material of concern is in a row. While it might be clear to professionals, newcomers in nuclear security might wonder why these materials are chosen, if without any explanations.

3.2 Case Studies

The case studies were conducted on the act of safeguards and physical protection in other countries. Canada and Japan were selected since they have the most similar environment with Korea being non-nuclear weapon states and nuclear export country. The regulation of France, Russian Federation, United Kingdom, and United States were also probed as advanced nuclear suppliers.

The texts referred are from the highest-level legislation of each country. The below is the founding from the case studies.

Table III: Def	initions in I	Laws of O	Other Countries
----------------	---------------	-----------	-----------------

Т	able III: Defin	itions in Laws of Other Countries
Country	Act	Definition Text
Canada	Nuclear	"Nuclear substance" means
[11]	Safety and	(a) deuterium, thorium, uranium or
	Control	an element with an atomic number
	Act	greater than 92;
		(b) a derivative or compound of
		deuterium, thorium, uranium or of
		an element with an atomic number
		greater than 92;
		(c) a radioactive nuclide;
		(d) a substance that is prescribed as
		being capable of releasing nuclear
		energy or as being required for the
		production or use of nuclear
		energy;
		(e) a radioactive by-product of the
		development, production or use of
		nuclear energy; and
		(f) a radioactive substance or
		radioactive thing that was used for
		the development or production, or
		in connection with the use, of
		nuclear energy.
Japan	Atomic	The term "Nuclear Fuel Materials"
[12]	Energy	means materials that emit high
[13]	Basic Act	energy in the process of nuclear
		fission, such as uranium and
		thorium which are specified by
		Cabinet Order;
		 The term "Nuclear Source
		Materials" means materials that are
		used as the raw materials of nuclear
		fuel materials, such as uranium ore
		and thorium ore, which are
		specified by Cabinet Order;
	•Act on	•The term "specified nuclear fuel
	the	material" as used in this Act means
	Regula-	plutonium (excluding that having
	tion of	an isotopic concentration of
	Nuclear	plutonium 238
	Source	exceeding 80 percent), uranium
	Material,	233, uranium with a ratio of
	Nuclear	uranium 233 and uranium 235 to
	Fuel	uranium 238 exceeding the ratio of
	Material	natural composition and other
	and Decentary	nuclear fuel material specified by
Earrie	Reactors	Cabinet Order.
France	•Defense	•The nuclear material fusible, fissile
[14]	Code	or fertile materials and any material
[15]	Article	containing one or more fusible,
	L1333-1	fissile or fertile elements, excluding
		ores whose list is specified by Order
	.D.f.	in Council of State
	•Defense	•The list of fusible material, fissile
	Code	or fertile mentioned in Article
	Article	L1333-1 of the Code includes
	R1333-1	plutonium, uranium, thorium,

-	-	1
		deuterium, tritium and lithium 6
Russian Federa- tion [16]	Federal Law No.170 of the Russian Federation on the Use of Atomic Energy	Nuclear materials – materials which contain or are capable of generating fissile(fissionable) nuclear substances;
United King- dom [17] [18]	•Energy Act 2013	 "nuclear material" means any fissile material in the form of— (i) uranium metal, alloy or compound; or (ii) plutonium metal, alloy or compound; or any other fissile material prescribed by regulations made by the Secretary of State;
	•Anti- terrorism, Crime and Security Act 2001	 "nuclear material" means— (a) any fissile material in the form of— (i) uranium metal, alloy or chemical compound; or (ii) plutonium metal, alloy or chemical compound;
United States [19]	Atomic Energy Act of 1954	The term "special nuclear material" means (1) plutonium, uranium enriched in the isotope 233 or in the isotope 235, and any other material which the Commission, pursuant to the provisions of section 51, determines to be special nuclear material, but does not include source material; or (2) any material artificially enriched by any of the foregoing, but does not include source material.

• Canada which invented the heavy water reactor included the deuterium in its control text. The 'element with an atomic number greater than 92' enables to control all the transuranic elements including plutonium, which broadens the scope of control.

• The Japanese control text is the most similar to the Korean.

• The French legislation including fusible material such as deuterium, tritium, and lithium-6 might be explained with the world's largest experimental tokamak nuclear fusion reactor, International Thermonuclear Experimental Reactor or ITER.

• Russia's control text only suggests what nuclear material is without any condition of elements or isotopes.

• United Kingdom's definition is rather broad and simple, which mentions only uranium and plutonium. A notable thing is the definition of nuclear material in

Energy Act is consistent with the one in legislation in nuclear security.

• The definition of United States is similar to IAEA's.

The scope of special fissionable material generally follows the IAEA's definition as shown in legislation of Japan and U.S. although the words are not exactly same.

3.3 International efforts to define nuclear material

Table IV: Definitions in Other International Documents

[Inter-	Fissile	i) Plutonium of any isotopic
	national	material	composition except plutonium that
	Panel on		contains 80 percent or more
	Fissile		plutonium-238
	Materials		ii) Uranium containing uranium-
			235 and/or uranium-233 in a
			weighted concentration equivalent
			to or greater than 20 percent
			uranium-235 iii) Any other fissile material
			suitable for the manufacture of
			nuclear weapons as agreed to in a
			protocol to this treaty
			iv) Material containing any
			combination of the foregoing
	IAEA	•Special	• Plutonium-239; uranium-233;
	Safe-	fission-	uranium enriched in the isotopes
	guards	able	235 or 233; any material containing
	Glossary	material	one or more of the foregoing
		 Fission 	•In general, an isotope or a mixture
		-able	of isotopes capable of nuclear
		material	fission. Some fissionable materials
		(Fissile	are capable of fission only by
		material	sufficiently fast neutrons (e.g.
)	neutrons of a kinetic energy above
			1 MeV). Isotopes that undergo
			fission by neutrons of all energies, including slow (thermal) neutrons,
			are usually referred to as fissile
			materials or fissile isotopes. For
			example, isotopes 233U, 235U,
			239Pu and 241Pu are referred to as
			both fissionable and fissile, while
			238U and 240Pu are fissionable but
			not fissile.
		•Fertile	•A nuclear material which can be
		material	converted into a special fissionable
			material through capture of one
			neutron per nucleus. There are two
			naturally occurring fertile materials:
			238U and 232Th. Through the
			capture of neutrons followed by two
			beta decays, these fertile materials are converted to fissionable 239Pu
			and 233U, respectively.
			and 2550, respectively.
		•Direct	•Nuclear material that can be used
		use	for the manufacture of nuclear
		material	explosive devices without

	transmutation or further enrichment. It includes plutonium containing less than 80% 238Pu, high enriched uranium and 233U. Chemical compounds, mixtures of direct use materials (e.g. mixed oxide (MOX)), and plutonium in spent reactor fuel fall into this category. Unirradiated direct use material is direct use material which does not contain substantial amounts of fission products; it would require less time and effort to be converted to components of nuclear explosive devices than irradiated direct use material (e.g. plutonium in spent reactor fuel) that
•Indirec use material	use material. It includes: depleted,

Fig. 1. Categorization of Nuclear Material based on IAEA Safeguards Glossary (underlined materials are 'direct use material')

Besides international regime which reached global consensus, there are efforts to define nuclear material among states.

The International Panel on Fissile Materials (IPFM) tries to present draft of Fissile Material Cut-off Treaty (FMCT) [20] with brief explanations. It is explicit in composition of isotopes in its 1^{st} and 2^{nd} paragraph.

IAEA Safeguards Glossary provides definition of terminology aforementioned such as special fissionable material, fissionable material, fissile material, and fertile material. In addition, it suggests another category for classifying nuclear material such as 'direct use material' and 'indirect use material.'

In terms of IAEA's definition, fissionable material should be of concern. Among fissile material, special fissionable material should be stressed in connection with its convenience of diversion to nuclear weapon.

Direct use material and indirect use material might provide most desirable definition in the light of timely detection as a goal of nuclear nonproliferation. Nonetheless, whether a material could be used for the manufacture of nuclear explosive devices directly or indirectly might be controversial depending on the strength and effectiveness of the devices. Some material might be clear to determine the necessity of process while others not.

According to the explanations by IPFM, the draft FMCT employs the 'direct use material' of the IAEA's definition in its definition of 'fissile material.' Therefore, the fissile material of IPFM might not correspond to that of the IAEA. For example, the IAEA includes low enriched uranium (LEU) in 'fissile material' as 'isotopes that undergo fission by neutrons of all energies, including slow (thermal) neutrons.' The IPFM does not include LEU in its 'fissile material' since it is indirect use material.

4. Recommendation

By benchmarking best practices, definition of nuclear material could be suggested. The draft should contain explanation for why certain materials are classified under certain terminology and it should be clear and easy to understand for practitioners in nuclear nonproliferation and security. Since the IAEA's definitions and terminologies are widely understood among the experts, it seems to be necessary to fully utilize these definitions.

Below is a draft definition of nuclear material in light of nuclear nonproliferation and security:

[DRAFT]

Article XX.

1. Nuclear material of question in this act means nuclear fissionable material which includes fissile and fertile material.

2. Fissionable material is an isotope or a mixture of isotopes capable of nuclear fission, including fissile and fertile material.

- i) Fissile material is isotopes or a mixture of isotopes that undergo fission by neutrons of all energies, including slow (thermal) neutrons such as special fissionable materials, uranium-235, plutonium-241, and neptunium-237.
 - a) Special fissionable materials aforementioned are plutonium-239, uranium-233, uranium enriched in the isotopes 235 or 233(including low enriched uranium and high enriched uranium), and mixed oxide (MOX).
 - b) Mixed oxide (MOX) is a mixture of the oxides of uranium and plutonium used as reactor fuel for the recycling of plutonium in thermal nuclear reactors and for fast reactors.
- ii) Fertile material is a nuclear material which can be converted into a special fissionable material through capture of one neutron per nucleus such as U-238 and Th-232.

3. The nuclear material might include other fissionable material as the Chairman of Nuclear Safety and Security Commission shall from time to time determine.

5. Conclusions

The recommendation showed the draft nuclear material definition in nuclear control. The text will facilitate the understanding of nuclear material in the context of nuclear nonproliferation and security. It might provide appropriate provision for future legislation related to nuclear nonproliferation and security. For effective safeguards and physical protection measures, nuclear material should be presented with in a consistent manner as shown in the case of United Kingdom.

It will be much more helpful if further material engineering studies on each nuclear material are produced. Multi-dimensional approach is required for the studies on the degree of efforts to divert nuclear material to nuclear explosive devices, e.g. IAEA's 'direct use material' and 'indirect use material.'

The state-specific materials should be considered in the case of Canada and France, deuterium and fusible material respectively. Korea does not have any consideration on building any additional heavy water reactors and exporting them. However, since it has actively participated ITER project, control of fusible material such as deuterium, tritium, and lithium-6 might be considered hereafter.

For further studies, diverse aspects of nuclear material should be examined. If so, regulation might detail in quantity, concentration, physical and chemical form, isotopic composition, irradiation status and quality of nuclear material to take more effective measures of safeguards and physical protection.

REFERENCES

[1] Nuclear Safety and Security Commission, Nuclear Safety Act, 2014 [Act No. 12666].

[2] Nuclear Safety and Security Commission, Enforcement Decree of the Nuclear Safety Act, 2014 [Presidential Decree No. 23248].

[3] Nuclear Safety and Security Commission, Act on Physical Protection and Radiological Emergency, 2014 [Act No. 12665].

[4] INTERNATIONAL ATOMIC ENERGY AGENCY, IAEA Safeguards Glossary, International Nuclear Verification Series No.3, 2001.

[5] INTERNATIONAL ATOMIC ENERGY AGENCY, Statute, 1989.

[6] INTERNATIONAL ATOMIC ENERGY AGENCY, The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-proliferation of Nuclear Weapons, INFCIRC/153(Corrected), 1976.

[7] INTERNATIONAL ATOMIC ENERGY AGENCY, Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards, INFCIRC/540(Corrected), 1997. [8] UNITED NATIONS, International Convention for the

[8] UNITED NATIONS, International Convention for the Suppression of Acts of Nuclear Terrorism, 2005.

[9] INTERNATIONAL ATOMIC ENERGY AGENCY, The Convention on the Physical Protection of Nuclear Material, INFCIRC/274/Rev.1, 1980.

[10] INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities, INFCIRC/225/Rev.5, 2011.

[11] (Canada) Nuclear Safety and Control Act, 2014 [S.C. 1997, c.9].

[12] (Japan) Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors, 1957 [Act No. 166].

[13] (Japan) Atomic Energy Basic Act, 1955 [Act No. 186].

[14] (France) Defense Code Article L1333-1, 2014 (unofficial translation).

[15] (France) Defense Code Article R1333-1, 2009 (unofficial translation).

[16] (Russian Federation) Federal Law No.170 of the Russian Federation on the Use of Atomic Energy, 2013 [Russian Gazette No.6121] (unofficial translation).

[17] (United Kingdom) Energy Act 2013, 2013 [c.32].

[18] (United Kingdom) Anti-terrorism, Crime and Security Act 2001, 2001 [c.24].

[19] (United States) Atomic Energy Act of 1954, 1954 [P.L. 83-703].

[20] International Panel on Fissile Materials, A Fissile Material (Cut-Off) Treaty (with article-by-article explanations), 2009.