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1. Introduction 

 
The prompt neutron decay constant (referred to as 

) is a basic neutronic parameter which can be directly 
measured in the reactor physics test. In the Monte Carlo 
(MC) neutron transport calculations, k-iteration-based 
methods with considering ‘time absorption’ or ‘time 
production’ [1-5] have been used for the -mode 
eigenvalue calculations. However these traditional 
methods are observed to cause instability for highly 
subcritical systems which leads to abnormal 
terminations from a sudden increase of the time sources 
[4,5]. In this paper, we propose a stable  calculation 
algorithm in which the population of the time sources is 
controlled by the power method for the time source. 
The effectiveness of the new  iteration method is 
examined for two-group infinite homogeneous 
problems and the Godiva problem [6]. 

 
2. Derivation of  Iteration algorithm 

 
The -mode eigenvalue equation for prompt neutron 

can be expressed in operator notation as 
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where  is the neutron angular flux and v is a neutron 
speed. Other notations follow convention.  

Treating the time source St as an external source, one 
can transform Eq. (1) for  into an integral equation 
for the collision density   defined by t   as 

 

4

( , , ) ( | , ) ( , , )

 ( , , , , ) ( , , );

t

E

E d T E S E

d dE d K E E E







   

         


  

r Ω r r r Ω r Ω

r Ω r Ω r Ω r Ω
    (5) 

( , , , , )

     ( | , ) ( , , | ),

K E E

T E C E E

    
     

r Ω r Ω

r r Ω Ω Ω r
                        (6) 

( , )
( , , | ) ( , , ),

( , )
r r

r
r t

E
C E E f E E

E

        
  r

Ω Ω r Ω Ω
r

   (7) 

2 0

( | , )

( , )
  exp ( , ) 1 ,t

t

T E

E
s E ds 



  

      
               


r r

r r Ω

r r r r r
r Ω

r r r rr r

 

(8) 

 
where r  is the average number of neutrons produced 

from a reaction type r and ( , , )rf E E dEd  Ω Ω Ω  the 

probability that a collision of type r by a neutron of 
direction Ω  and energy E  will produce a neutron in 
direction interval d about  with energy in dE about 
E. 

Then the Neumann series solution to Eq. (5) can be 
expressed as 
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Multiplying 1 1
t  v  on both sides of Eq. (9), one 

can obtain the -mode eigenvalue equation for the time 
source as 
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The fundamental mode solution to Eq. (11) can be 
found by means of the power method: 
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where i is the iteration index. 
Whenever a collision occurs in the course of the 

power iteration governed by Eq. (13), the source 
neutrons for the next iteration (i+1) are sampled as 
many as 
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where j and k are indices of time source and collision, 
respectively. [x] denotes the largest integer not 
exceeding x.  is a uniform random number on the 
interval of (0,1]. Note that location, energy, and 
direction of these sources are ( , , )ijk ijk ijkEr Ω and that i-1 

in Eq. (15) plays a role of controlling the total number 
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of time sources per iteration. The weight of the time 
sources of iteration i, wi, is set to  
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where M is a number of sources per iteration initially 
set by a code user. Eq. (14) implies that i can be 
estimated by the collision estimator as 
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3. Numerical Results 

 
The new  iteration algorithm and the conventional 

iteration method [5] have been implemented in 
McCARD [7] and tested for two-group infinite 
homogeneous medium problems and Godiva. 

 
3.1 Two-group infinite homogeneous problems 

 
Table I shows two-group cross sections varying the 

prompt criticality kp. The differential scattering cross 
section of the first group, s21, is set to 0.265714, 
0.197143, 0.128571, 0.060000, or 0.008571, which 
correspond to kp of 0.9, 0.7, 0.5, 0.3, or 0.15.  

 
Table I: Two-group cross sections for infinite 
homogeneous problems 
Cross section First Gr. (g=1) Second Gr. (g=2)

t 0.50 0.50 
f 0.025 0.175 
 2.0 2.0 
sgg 0.10 0.20 

sg’g (g≠ g’) variable 0.00 
p 1.0 0.0 

1/v [sec/cm] 2.2862610-10 1.2932910-6 

 
The MC  calculations are performed for 1000 active 

iterations on 10,000 sources per iteration. Table II 
shows comparisons of ’s calculated by the new 
algorithm and the conventional method with analytic 
solutions. From the table, one can see that the MC 
results from the new method agree well with the 
analytic references within 95% confidence intervals 
while the conventional method fails when kp are 0.3 and 
0.15. 

 
Table II:  comparisons for infinite homogeneous 
problems 

kp Ref.  
Conventional 
method (SD) 

New method 
(SD) 

0.90 26507.1 26500.1 (12.8) 26524.4 (14.0)
0.70 79523.4 79574.6 (33.8) 79522.6 (18.1)
0.50 132544.0 132518.0 (70.8)  132539.0 (20.9)
0.30 185568.0 fail 185554.0 (26.6)
0.15 225338.0 fail 225328.0 (31.3) 

 
As observed in Table II, the traditional iteration 

method in which the time sources are generated at all 
the collision sites with probability of  t v  in a 

neutron history suffers from abnormal terminations. In 
order to investigate these abnormal terminations, we 
introduce an expected number of time sources per 
source neutron. 

For simplicity, suppose a one-group infinite 
homogeneous problem written as 
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with of  r f  v . 

In the MC simulations of Eq. (18), the production 
probability of the time source p and the neutron 
absorption probability pabs become 
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Then the expected number of time sources per source 
neutron, Ntime can be written by 
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When Ntime becomes greater than 1, the expectation 
of the total number of time sources in a single history 
becomes infinity which leads to the abnormal 
termination. Therefore the upper limit of  that assures 
the stability of the MC calculations can be expressed 
from Eq. (21) as    

 

.r  v                               (22) 
 

By inserting the analytic value of  of  r f  v  

into Eq. (22), we can find that the condition of Eq. (22) 
is satisfied for the one-group infinite homogeneous 
problem. 

However, abnormal terminations are able to occur in 
the conventional method in which  is updated by 
 

1 /i i ik                              (23) 
 

where i is the iteration index and k is the multiplication 
factor. Because of this procedure that  is divided by k, 
a statistical uncertainty of k causes large fluctuations of 
, and therefore the condition of Eq. (22)  may not be 
satisfied. 

In the case of two-group problem, the approximate 
upper limit of  can be obtained from the thermal group 
because Eq. (22) shows the upper limit of  is 
proportional to the neutron speed.  

In the case of kp of 0.3, the upper limit of , limit can 
be obtained 
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limit 2 2 2.3196 10 .r    v                   (24) 
 

The ratio of the upper limit to the reference is 
about 1.25. Figure 1 shows i for kp of 0.3 with 105 and 
107 histories per cycle. From the figure, we can 
observed that the abnormal terminations happen at 6-th 
cycle by i=241187.0 for the 105 history case and 8-th 
cycle by i=233344.0 for the 107 history case because 
i becomes larger than limit. 
 

 
Fig. 1. Fluctuation of  versus cycles 

 
3.2 Godiva problem 

 
The MC  calculations with continuous-energy cross 

section libraries produced from ENDF/B-VII.0 are 
conducted for Godiva [6]. The McCARD  calculations 
are performed for 1000 active iterations on 10,000 
sources per iteration. Table III shows a comparison of 
the McCARD result with  from an exponential fit of a 
numerical pulsed neutron experiment. 

 
Table III:   estimation for Godiva 
 Ref. (Err.[%]) McCARD (RSD[%])
Godiva 1.15076×106 (0.52) 1.16506×106 (0.35) 

 
4. Conclusions 

 
A new MC  calculation method is developed to 

estimate the fundamental mode  eigenvalue in 
subcritical systems. In the new  iteration algorithm, 
the time sources are iteratively updated while the 
fission sources are updated in the conventional method. 
It is demonstrated that the new method does not have 
the instability problem in two-group homogeneous 
problems with large subcriticality. 
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