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1. Introduction 
 

The sampling based sensitivity and uncertainty (S/U) 
analysis method [1] is a stochastic approach to get the 
uncertainties of the reactor characteristics using the sets 
of randomly sampled cross sections. XSUSA [2] is a 
representative code using the stochastic approach for 
the sampling based S/U analysis. Due to the 
characteristic of the stochastic methodology, the result 
of the sampling based S/U estimation always 
accompanies the stochastic errors. In addition, if the 
Monte Carlo method is used as a tool of transport 
analysis, the stochastic error of the uncertainty result 
can be propagated by the two stochastic uncertainty 
parameters, which are the Monte Carlo stochastic error 
and the input uncertainty caused by the sampling based 
approach. Usually, to reduce the Monte Carlo stochastic 
uncertainty, the stochastic errors are enough reduced 
using lots of the particle history per each calculation. In 
this study, an estimate method of the stochastic 
uncertainty on the S/U analysis using the Monte Carlo 
method is proposed to confirm the effect of the Monte 
Carlo stochastic errors to the S/U result. 

 
2. Methods and Results 

 
The sampling based S/U analysis is performed as the 

following procedure: 1) a number of cross section sets 
are generated with the random sampling of the cross 
section using the covariance data, 2) the transport 
calculations with each sampled cross section are 
pursued using a transport code, and 3) the uncertainty 
of the responses calculated by the transport code is 
analyzed. In the analysis procedure, if the Monte Carlo 
code is used for the S/U analysis, each response has a 
stochastic uncertainty. As a result, the stochastic error 
can affect the result of S/U analysis. In this study, a 
method to evaluate and separate the stochastic 
uncertainty caused by using Monte Carlo simulation 
method is proposed. 

 
2.1 Analysis Method 

 
Let α is an input uncertainty parameter. Then, we can 

get a single output response R(α) from each transport 
simulation. The sampling based S/U analysis is 
performed with sets of the cross sections as follows: 

1 2 3= [ , , ,..., ]k k k k kIα α α α α ; (k = 1, 2, …., n)     (1) 

1 2( ) = [ ( ), ( ),..., ( )]k k k J kR α R α R α R α ; (k = 1, 2, …., n)     (2) 

where I is the number of parameter types for a transport 
simulation, k is a set of random sampling, and n is the 
number of random samples. Generally, the standard 
deviation of the responses in Eq. (2) is evaluated for the 
S/U analysis. With considering the Monte Carlo 
stochastic uncertainty, the standard deviation of the 
responses can be expressed by Eq. (3).  

2 2 2

R MC T       (3-1) 

2 2

R T MC      (3-2) 

where 
R  is an average standard deviation of the 

responses caused by the input uncertainty, 
MC  is an 

averaged standard deviation of Monte Carlo stochastic 
uncertainties for the responses, 

T  is an averaged total 

standard deviation of the responses including both input 
uncertainty and Monte Carlo stochastic uncertainty. 
Using the Monte Carlo method, the 

T  is calculated, of 

which the stochastic uncertainty is included. Therefore, 
the response uncertainty caused by the randomly 
sampled cross sections can be estimated by Eq. (3-2). 
To calculate the uncertainty of the 

R , a well-known 

uncertainty propagation equation was introduced as 
shown in Eq. (4).  
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where f is a function which has the variables a and b; 
f(a,b). Using Eqs. (3-2) and (4), the uncertainty of the 
standard deviation of the response, [ ]R  , can be 

derived to the following equation:  
22
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where [ ]T   is a standard deviation of the average 

uncertainty including both response uncertainty and 
Monte Carlo stochastic uncertainty, [ ]MC   is a 

standard deviation of the averaged Monte Carlo 
stochastic uncertainty, and cov[ , ]T MC   is a covariance 
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between 

T  and 
MC . The uncertainty parameters, 

which are 
MC , [ ]MC  , and 

T , can be easily 

estimated from the response results. However, the 
parameters [ ]T   and cov[ , ]T MC   cannot be directly 

calculated from the results of the responses. Here, we 
introduced the estimation strategies for the parameters. 

The 
2

T  is the average over the square of each 

deviation {R(α) - R }2; therefore, the distribution of the 
square of the deviation follows the gamma distribution. 
Also, it is well known that the sampling distribution of 
the gamma distribution follows the central limit theory. 
Thus, the standard error of the gamma distribution (the 
standard deviation of the responses) can be estimated as 
given in Eq. (6).  

2[ ]
~ ( , )N

n

     (6) 

In this study, the [ ]T   and [ ]MC   is calculated as 

shown in Fig. 1. First, the responses are grouped with n 
number of sub-groups. As a result, each group has m 
responses. Then, the standard deviation of each group 
can be estimated. The standard deviation of the group 
standard deviations from the n groups is can be simply 
calculated. Finally, using the central limit theorem, the 
uncertainty  [ ]T   and [ ]MC   can be calculated with 

Eqs. (7) and (8).  
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Fig. 1. Proposed strategy for the calculation of [ ]T   and 

[ ]MC   
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Also, the covariance in Eq. (5) can be calculated as 
shown in Fig. 2. As the same way with Fig. 1, the 
results are grouped, and the covariance of the group 
standard deviations is estimated. The relationship 
between the 

, ,cov[ , ]T gn MC gn   and cov[ , ]T MC   are 

given in Eq. (9). Hence, the covariance 
cov[ , ]T MC  can be directly calculated from the 

estimation of 
, ,cov[ , ]T gn MC gn  . 
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Fig. 2. Proposed strategy for the calculation of 
cov[ , ]T MC   

 
2.2 Evaluation and Analysis 
 

For the estimation and verification of the proposed 
method, 44 group cross section and covariance data 
from ENDF-VII.1 cross section library were generated 
using NJOY code [3]. Then, random sampling of both 
U-235 and U-238 cross sections using covariance data 
was pursued for the reactions which are MT number #1, 
#2, #4, #18, and #102 (total, elastic, (n,n'), fission, and 
absorption reactions), respectively [4]. For three 
benchmark problems, multiplication factors using each 
randomly sampled cross section were estimated by 
McCARD Monte Carlo code [5]. The details of the 
benchmark problems are given in Fig. 3 and Table I. 
Also, the simulation conditions for each eigenvalue 
calculation are given in Table II.  
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(a) GODIVA 

 
(b) PWR Pin-cell 

 
(c) TRISO Pin-cell 

Fig. 3. Radial Views of the Benchmark Problems 
 

Table I: Details of Benchmark Problems 

Problem 
Name 

Classifi-
cation 

Variable Value 

GODIVA 

Geometry Radius of Uranium Sphere 8.741 cm 
Density U-sphere Density 18.74 g/cc 

Material 
U-235 [mass fraction] 94.73 % 
U-238 [mass fraction] 5.27% 

PWR  
Pin-cell 

Geometry 

Radial Arrangement Infinite 
Radius of Fuel Cylinder 0.41275 cm 

Radius of Inner Cladding 0.42164 cm 
Radius of Outer Cladding 0.48514 

Height Infinite 
x-max. of Water Moderator 0.6425 cm 
x-min. of Water Moderator -0.6425 cm 
y-max. of Water Moderator 0.6425 cm 
y-min. of Water Moderator -0.6425 cm 

Density 

Fuel 10.176 g/cc 
Gap 0.001 g/cc 

Cladding 6.55 g/cc 
Water 0.7 g/cc 

Material 

U-234 in Fuel [mass fraction] 0.0237 % 
U-235 in Fuel [mass fraction] 14.9618 % 
U-238 in Fuel [mass fraction] 66.1645 % 
O-16 in Fuel [mass fraction] 11.8500 % 
O-16 in Gap [mass fraction] 100 % 

Natural Zr in Cladding  
[mass fraction] 

100 % 

H-1 in Water [mass fraction] 11.19 % 
O-16 in Water [mass fraction] 88.81 % 
B-10 in Water [mass fraction] 0.02 % 
B-11 in Water [mass fraction] 0.08 % 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TRISO 
Pin-cell 

Geometry 

Radius of Fuel Sphere 0.02125 cm 
Radius of Buffer 0.03125 cm 

Radius of Inner PyC 0.03475 cm 
Radius of SiC 0.03825 cm 

Radius of Outer PyC 0.04225 cm 
x-max. of Graphite Moderator 0.08 cm 
x-min. of Graphite Moderator -0.08 cm 
y-max. of Graphite Moderator 0.08 cm 
y-min. of Graphite Moderator -0.08 cm 
z-max. of Graphite Moderator 0.08 cm 
z-min. of Graphite Moderator -0.08 cm 

Density 

Density of Fuel Sphere 10.5 g/cc 
Density of Buffer  1 g/cc 

Density of Inner PyC 1.9 g/cc 
Density of SiC  3.2 g/cc 

Density of Outer PyC  1.9 g/cc 
Density of Graphite 

Moderator 
1.9 g/cc 

Material 

U-235 in Fuel Sphere  
[atomic fraction] 

5.22 % 

U-238 in Fuel Sphere  
[atomic fraction] 

28.07 % 

O-16 in Fuel Sphere  
[atomic fraction] 

50.07 % 

C-Nat in Fuel Sphere  
[atomic fraction] 

16.64 % 

C-Nat in Buffer  
[atomic fraction] 

100 % 

C-Nat in PyC [atomic 
fraction] 

100 % 

Si-28 in SiC [atomic fraction] 46.08 % 
Si-29 in SiC [atomic fraction] 2.34 % 
Si-30 in SiC [atomic fraction] 1.55 % 
C-Nat in SiC [atomic fraction] 50.03 % 
C-Nat in Graphite Moderator  

[atomic fraction] 
100 % 

 
Table II: Simulation Conditions for the Calculation Cases 

Case
No.

Problem
Name 

Num. of 
Responses

Active Cycles 
Particle 
History 

1-1 
GODIVA 

#1 1,000 10,000 350 

1-2 
GODIVA 

#2 1,000 1,000 350 

1-3 
/1-4

GODIVA 
#3 300 100 350 

2-1 
PWR  

Pin-cell 
#1 

1,000 5,000 300 

2-2 
PWR  

Pin-cell 
#2 

1,000 500 300 

2-3 
/2-4

PWR  
Pin-cell 

#3 
300 100 300 

3-1 
TRISO  
Pin-cell 

#1 
1,000 2,000 100 

3-2 
TRISO  
Pin-cell 

#2 
1,000 390 100 

3-3 
/3-4

TRISO  
Pin-cell 

#3 
300 190 100 

 
Fig. 4 is the results of the S/U analysis with 95 % 

confidence interval for Cases 1-1, 2-1, and 3-1 as 
increasing the number of cross section sets. The results 
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show that the S/U results have a good agreement with 
each other within the 95 % confidence interval. 
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(a) GODIVA Problem (Case 1-1) 
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(b) PWR Pin-cell Problem (Case 2-1) 
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(C) TRISO Pin-cell Problem (Case 3-1) 

Fig. 4. S/U Results of Responses (keff) with 95% Confidence 
Interval as Increasing the Number of Cross Section 
Sets 

 
Table III are the results of 

R , [ ]R  , and 
MC  for 

the benchmark problems with Table II condition. It was 
evaluated that all results of the S/U analysis give good 
agreements within the 95% confidence interval for each 
problem. The analysis on the agreements within the 
95% confidence interval shows that the proposed 
method can effectively calculate the standard errors of 
the S/U analysis results. In addition, the analysis results 
show that the effect of the Monte Carlo stochastic error 
on the S/U analysis result is much smaller than that of 
the number of the cross section sets.  

Table III: Results of S/U analyses and stochastic errors 

Case No. R  [ ]R   
MC  

1-1 0.015961 0.000366 0.000324 
1-2 0.015947 0.000382 0.001024 
1-3 0.015590 0.000799 0.003228 
1-4 0.017197 0.000930 0.003259 
2-1 0.022488 0.000539 0.000519 
2-2 0.022254 0.000578 0.001643 
2-3 0.020162 0.001049 0.003712 
2-4 0.023951 0.001211 0.003678 
3-1 0.017032 0.000406 0.001730 
3-2 0.017273 0.000463 0.003920 
3-3 0.016344 0.000818 0.005668 
3-4 0.018383 0.000843 0.005645 

 
3. Conclusions 

 
In this study, an evaluation method of the stochastic 

error on the result of the sampling based S/U analysis 
with Monte Carlo simulation is proposed. Using the 
properties of the sample distribution, the evaluation 
method was derived. The S/U analysis and their 
uncertainties were evaluated for the three benchmark 
problems for the verification of the proposed method. 
The results show that all S/U analysis results give good 
agreements within the 95 % confidence intervals for 
each other. It is expected that the proposed method can 
contribute to improve the accuracy of the sampling 
based S/U analysis as well as the enhancing the 
calculation efficiency. 
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