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analysis with the MARS-LMR. The core region is 
divided into 6 channels, and the hot pool region is 
divided into 3 regions: a radially inside region of an 
inner barrel (volume number: 230), a radially outside 
region of an inner barrel (volume number: 100), and an 
overflow region (volume number: 240). 48 LFHs and 
24 UFHs are modeled as pipes (volume number: 801 
and 901, respectively) to consider an abrupt area change 
due to a flow hole. Sodium in a lower position than a 
core barrel (volume number: the 1st node of 230) 
assumed to remain in a low temperature.  
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Fig. 3 Nodalization for the 1-D analysis with MARS-LMR 
 
Figure 4 and figure 5 show flow rates of the RV 

upper plenum, flow holes, and overflow region in 
steady-state calculations of a 1-D analysis. In this 
calculation, the flow rate of a LFH is 2.32 kg/s, while 
the flow rate of an UFH is 1.55 kg/s. The over-flow rate 
over the inner barrel is calculated as 1878.8 kg/s.  

Figure 6 to 15 show a transient result calculated in 
the MONJU RV upper plenum until 3600 sec after a 
turbine trip. A thermal stratification phenomenon is 
observed as shown in Figure 6. Coolant temperature 
remarkably decreases until about 600 sec after the 
turbine trip, and then the coolant is cooled slowly after 
600 sec. Sodium under the 5th node with UFHs are well 
mixed by natural convection flow, so their temperatures 
become to be almost same. On the other hands, sodium 
over the 5th node shows a thermally stratified condition.  

Figure 7 to 8 show sodium flow rates in the RV 
upper plenum, flow holes, and overflow region in 
transient calculations. In this calculation, the maximum 
flow rate of a LFH is estimated as 6.4 kg/s at 1498 sec, 
while the maximum flow rate of an UFH is 5.3 kg/s at 
1922 sec after a reactor trip. The over-flow rate over an 
inner barrel decreased into zero after 2882 sec, which 
results in stagnations of sodium temperatures in the 
region from the 6th node to the 9th node of 230.   

Figure 9 to 16 show comparisons of the calculated 
temperatures in the 1-D analysis with the MONJU 
System Start-up Tests(SSTs) data. The calculated 
results show a good agreement with the MONJU 
experimental data until 2500 sec after the turbine trip. 
However, the calculated temperature at the 9th node 

near the top of an inner barrel is lower than the 
experimental data. It is considered as limitation of the 
one-dimensional analysis, because the over-flow region 
has multi-dimensional flow phenomenon. 

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

 

 

 Time, sec

M
a

ss
flo

w
 R

at
e,

 k
g/

se
c

1-D Calculation
 1 node
 2 node
 3 node
 4 node
 5 node
 6 node
 7 node
 8 node
 9 node

Fig. 4 Flow rates along the RV upper plenum in the steady-
state analysis 
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Fig. 5 Flow rates of flow holes and overflow in the steady-
state analysis 
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Fig. 6 Temperature stratification under the transient condition 
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Fig. 7 Flow rates along the RV upper plenum in the transient 
analysis 
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Fig. 8 Flow rates of flow holes and overflow in the transient 
analysis 
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Fig. 9 Temperatures at the 2th node of 230 during the 
transient calculation 
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Fig. 10 Temperatures at the 3th node of 230 during the 
transient calculation 
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Fig. 11 Temperatures at the 5th node of 230 during the 
transient calculation 
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Fig. 12 Temperatures at the 6th node of 230 during the 
transient calculation 
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Fig. 13 Temperatures at the 7th node of 230 during the 
transient calculation 
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Fig. 14 Temperatures at the 8th node of 230 during the 
transient calculation 
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Fig. 15 Temperatures at the 9th node of 230 during the 
transient calculation 
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Fig. 16 RV outlet temperature during the transient calculation 
 

3. Conclusions 
 

One-dimensional thermal hydraulic analysis was 
implemented in MARS-LMR code to validate the 
thermal-hydraulic models of the MARS-LMR code and 
identify important phenomena such as buoyancy effect 
and thermal stratification. The calculated result shows a 
good agreement with the MONJU experimental data. 
However, a calculated temperature at the 9th node near 
the top of an inner barrel is lower than an experimental 
data. It is considered to be caused by modeling of an 
over-flow region as one dimensional volume, because 
the over-flow region has multi-dimensional flow 
phenomenon. Therefore, the multi-dimensional flow in 
the over-flow region is a point to be considered for 
further studies. 
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