Cycle layout studies of S-CO₂ cycle for the next generation nuclear system application

Yoonhan Ahn*^a, Seong Jun Bae^a, Minseok Kim^a, Seong Kuk Cho^a, Seungjoon Baik^a, Jeong Ik Lee^{*a}, Jae Eun Cha^b ^aDepartment of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology

373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701, Korea

Tel: 82-42-350-3829, Fax: 82-42-350-3810,

*Corresponding author: yoonhan.ahn@kaist.ac.kr, jeongiklee@kaist.ac.kr

^bFast Reactor Technology Development Division, Korean Atomic Energy Research Institute, 305-353, DukJin-Dong 150, Yuseong-gu, Daejeon, Korea

1. Introduction

As the interest on the development of advanced reactors is increasing, the need for the alternative power conversion systems is also increasing. As the efficiency of current water-cooled reactor is lower than other power plants, the operating temperature of the next generation nuclear reactors is generally higher than the current water-cooled reactors. According to the second law of thermodynamics, the next generation nuclear reactor system efficiency can potentially be increased with higher operating temperature.

Fig.1 shows several power conversion system efficiencies and heat sources with respect to the system top operating temperature. As shown in Fig.1, the steam Rankine and gas Brayton cycles have been

considered as the major power conversion systems more than several decades ..

In the next generation reactor operating temperature region (450 - 900°C), the steam Rankine and gas Brayton cycles have limits due to material problems and low efficiency, respectively. Among the future power conversion systems, S-CO₂ cycle is receiving interests due to several benefits including high efficiency under the mild turbine inlet temperature range (450-650°C), compact turbomachinery and simple layout compared to the steam Rankine cycle. As CO₂ behaves more like an incompressible fluid near the critical point, S-CO₂ cycle can achieve higher efficiencv under relatively low turbine inlet temperature compared to the general Brayton cycle.

Fig. 1. Power cycle efficiencies

2. Various layouts of S-CO₂ Cycle

2.1 Literature Review

The studies on the supercritical cycle was firstly done in the United States by Feher [1]. The critical condition of various fluids is compared and the critical temperatures of some candidates such as NO_2 , xenon and CO_2 are close to the atmospheric temperature. However, NO_2 is a chemically reactive gas and xenon is a monoatomic gas which favorable characteristics of non linear property change near the critical point are not observed.

Several layouts of S-CO₂ cycle are suggested and compared by Angelino [2]. His original work focused on the condensation cycle but some layouts including recompression cycle, partial cooling cycle and precompression cycle are still used in the S-CO₂ cycle research. He showed that the efficiency of recompression cycle with 650° C turbine inlet temperature is competitive to the reheat steam Rankine cycle. He summarized his work on the CO₂ condensation cycle with two applications; one is for the mild temperature range (450-550°C) with the benefits of simple layout and compactness, the other is for the high temperature range (650-800°C) with the high efficiency as well as the simplicity and compactness.

Dostal revitalized the S-CO₂ cycle for the nuclear application and designed the recompression cycle with the turbine inlet temperature 550-750°C [3]. For the S-CO₂ heat exchangers, he designed PCHE and estimated the size of a S-CO₂ cycle. After Dostal's work, S-CO₂ cycle researches on various heat sources including the concentrated solar power (CSP), fuel cell and gas turbine exhaust, waste heat recovery system and alternative power conversion system of current power plants were conducted [4, 5, 6, 7]. Most studies referred and adopted the recompression cycle which is known as the most efficient layout for the S-CO₂ cycle. relatively small specific work of However. recompression cycle can limit the system performance especially on the waste heat recovery systems. Kimzey referred the current CO₂ waste heat recovery systems and compared the S-CO₂ bottoming cycle that can maximize the usable work from the exhaust gas of current gas turbines [8]. Bae designed the cascade CO₂ system that consists of topping S-CO₂ recuperation cycle and bottoming CO2 Rankine cycle for the bottoming cycle application of fuel cells [5]. Some S-CO2 cycle layouts from Angelino's work were compared by Martin [9]. This study reviews the overall S-CO₂ layouts including the primary and bottoming cycle application and suggests the S-CO₂ layout classification to develop innovative systems.

2.2 S-CO₂ Cycle Layout Classification

Several S-CO₂ cycles have been analyzed in the previous studies. However, the general classification of S-CO₂ cycles is not discussed in the previous studies in much detail. Although some advanced S-CO₂ layouts were suggested from various literatures, these suggested layouts is simply a combination of several commonly utilized processes in power plant engineering such as intercooling, reheating and recuperation. Therefore, this study is attempted to suggest general layout classification for analysis and compare various S-CO₂ cycles' performance in a fair way.

In the closed Brayton cycle design, the recuperation process is usually required to improve the cycle efficiency by minimizing the waste heat. Therefore the recuperation cycle can be considered as the reference layout in the S-CO₂ cycle design.

The overall layouts of S-CO₂ cycle (only considered in the basic layouts) are shown in Fig. 2. The CO₂ flow can be separated depending on the heat source condition. Therefore the cycle can be divided whether the flow is split. The single (non-split) flow layouts are composed of intercooling, reheating, pre-compression, inter-recuperation, and split expansion cycles. The intercooling and reheating layouts are adopted to minimize or maximize the compression or expansion work, respectively. As the exhaust CO₂ temperature in the turbine is still high due to the low cycle pressure ratio, the heat can be recuperated in several ways. In the single flow layouts, the inter-recuperation, precompression and split expansion layouts are suggested depending on the recuperation processes.

The split flow layouts are composed of recompression, preheating and turbine split flow 1, 2, 3. The difference of recompression layout and the others is the recuperation processes. In the recompression layout, the heat is recuperated in High Temperature and Low Temperature Recuperators. To maximize the cycle efficiency, the heat recuperation is maximized. The temperature difference in IHX is maximized in other layouts. The additional heater is used in the preheating layout. The expansion processes are added in the turbine split flow 1-3 layouts.

2.3 Performance comparison of S-CO₂ cycle layouts

To compare the cycle performance, the design condition of the layouts is listed in Table 1. The pressure drop is ignored in this study. The cycle efficiency and specific work ratio (compared to the recuperation cycle) of S-CO₂ layouts are compared in Fig. 3. For the next generation nuclear reactor applications, the cycle efficiency is the main design target for the power conversion system design. Among the discussed layouts, the recompression layout efficiency is superior to other layouts. However, the specific work of recompression cycle is lower than other layouts and other layouts also can be considered in other applications such as waste heat recovery systems. Further studies on the layout comparison are required to design a better performing cycle.

Layout	Recuperation	Intercooling	Reheating	Inter-recuperation	Pre-compression	Split-expansion
Turbine inlet temperature, ^o C	500					
IHX inlet temperature, °C	278.7	251.9	352.0 / 428.3	302.5	284.4	272.7
Compressor inlet temperature, °C	32					
Compressor inlet & outlet pressure, MPa	7.5 / 25					
urbine & compressor isentropic efficiency,	90 / 85					
(HT/LT) Recuperator effectiveness, %	95	95	95	95 / 60	95 / 95	95
Layout	Recompression	Preheating	Turbine split flow 1	Turbine split flow 2	furbine split flow i	
Turbine inlet temperature, ^o C	500					
IHX inlet temperature, °C	338.3	99.3	148	185.1	99.3	
Compressor inlet temperature, °C	32					
Compressor inlet & outlet pressure, MPa	7.5/25					
urbine & compressor isentropic efficiency,	90 / 85					
(HT/LT) Recuperator effectiveness, %	93.3 / 95	95	95 / 89	52 / 95	95 / 95	
Flow split ratio (m_H/m_T)	69.24	50	55.84	59.96	51.55	

Table I: S-CO₂ Cycle design conditions

Transactions of the Korean Nuclear Society Autumn Meeting Pyeongchang, Korea, October 30-31, 2014

Transactions of the Korean Nuclear Society Autumn Meeting Pyeongchang, Korea, October 30-31, 2014

Fig. 3. Performance comparison of S-CO₂ Cycle layout

3. Summary and further works

S-CO₂ cycle can show relatively high efficiency under the mild turbine inlet temperature range (450- 600° C) compared to other power conversion systems. The recompression cycle shows the best efficiency among other layouts and it is suitable for the application to advanced nuclear reactor systems. As S-CO₂ cycle performance can vary depending on the layout configuration, further studies on the layouts are required to design a better performing cycle.

ACKNOWLEDGMENT

Authors gratefully acknowledge that this research is financially supported by the Korean Ministry of Education, Science and Technology and by the Korean Atomic Energy Research Institute

REFERENCES

[1] E. G. Feher, Ther Supercritical Thermodynamic Power Cycle, Douglas Paper No. 4348, 1967

[2] G. Angelino, Carbon Dioxide Condensation Cycle for Power Production, ASME Paper No. 68-GT-23, 1968

[3] V. Dostal, M. J. Driscoll, P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, MIT-ANP-TP-100, 2004

[4] T. Neises, C. Turchi, A Comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications, Energy Procedia, 2014

[5] S. J. Bae, Y. Ahn, J. Lee, J. I. Lee, Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application, Journal of Power Sources, 2014

[6] H. J. Yoon, Y. Ahn, J. I. Lee, Y. Addad, Potential advantages of coupling supercritical CO₂ Brayton cycle to water cooled small and medium size reactor, Nuclear Engineering Design, 2012

[7] Y. Ahn, J. I. Lee, Study of various Brayton cycle designs for small modular sodium-cooled fast reactor, Nuclear Engineering Design, 2014

[8] G. Kimzey, Development of a Brayton Bottoming Cycle using Supercritical Carbon Dioxide as the Working Fluid, Electric Power Research Institute Report

[9] K. Martin, V. Dostal, Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles, Supercritical CO₂ Power Cycle Symposium, 2011