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1. Introduction 
 

Safety of nuclear power plant is assured through the 
safety and performance analyses for the reactor, and 
they are largely dependent on the core inlet flow 
distribution. Of course, when evaluating the core 
thermal margin, the flow distribution in reactor is also 
very important. Thus, the identification of reactor 
hydraulic characteristics is essential process in the 
nuclear reactor design. Actually several core flow 
distribution tests were carried out with small scaled 
models. It is known that ABB-CE conducted the test for 
the design of System 80 reactor using a 3/16 scaled 
model reactor in the last 1970s. In domestic industry 
experimental studies was carried out in 1990s using a 
1/5.03 scale reactor flow model of Yong-gwang nuclear 
units 3 and 4. Euh et al. studied the core flow 
distribution tests with 1/5 scaled test facilities for 
SMART and APR+ in 2000s, respectively [1]. 

Theoritical basis for such tests are on Hetsroni’s 
study [2].  In this study he proposed seven important 
parameters which largely affect the hydraulics of the 
core flow distributions. Through the non-
dimensionalization process using Pi theorem, he 
suggested four principal dimensionless groups; 
geometrical constrain (aspect ratio), relative wall 
roughness, Reynolds number, and Euler number.  

This paper studies the scaling of core flow 
distribution for a pool type sodium fast reactor (SFR). At 
first Hetsroni’s study was intensively reviewed, and a 
general derivation of the dimensionless groups from the 
governing equations is presented. Finally, the 
applicability of the derived approach is tested for a pool 
type SFR. 

 
2. Review of Hetstroni’s Approach 

 
Hetsroni identified the 7 important parameters which 

are inter-related with each other in the core flow 
distribution; 

( ), , , , ,Hp u L Dψ ρ ν ε=   (1) 

, where p, u, ρ , ν, L DH, and ε are pressure, velocity, 
density, kinematic viscosity, hydraulic diameter, and 

wall roughness, respectively. This can be reduced to 
four dimensionless groups with the help of Pi Theorem.  
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, where the left hand side is Euler number, and the 
right hand side are aspect ratio, relative wall roughness, 
and Reynolds number, respectively.  

According to Hetsroni the similarity in geometry, 
which is corresponding to the aspect ratio and the 
relative wall roughness, was decided to be maintained 
between prototype and model wherever possible. And it 
was concluded that Euler number should be similar in 
both the prototype and the model. However, Reynolds 
number is less important in high turbulent region, 
because form loss coefficient is independent of 
Reynolds number and friction factor is just weakly 
dependent on Reynolds number. 

A modern sophisticated expression for the similarity 
requirement is given by 
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, where ψ is a dimensionless group, and subscripts m, 
p, and R indicate model, prototype, and model-to-
prototype ratio, respectively. This relation means that 
the model dimensionless group should be same to 
prototypic dimensionless group. 

Reconsidering Eq. (2) on the base of the requirement 
given by Eq. (3), following insights can be obtained: 

(1) From the conservation of aspect ratio number, 
the length scale and diameter scale are 
independent, i.e., different scale can be set. 
However, it is out of general consensus for the 
geometry constrains in multidimensional 
phenomena. When deriving dimensionless 
groups from the multidimensional governing 
equation, the same length scale in all coordinates 
are inevitable [3.4]. Actually, Hetsroni also used 
the same length scale in diameter and longitude. 

(2) Similarity criterion also requires the relative wall 
roughness to be conserved. That is, in a small 
scaled model the model wall roughness should be 
reduced by the factor of the diameter scale. It is 
surely a very tiresome request. 
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(3) Less importance of Reynolds number is not 

explicitly shown in Eq. (2). In other words, the 
relation between Reynolds number and friction 
coefficient is not revealed at least in Eq. (2). It 
seems that Eq. (2) requires Reynolds number to 
be conserved. More logical explanation is desired 
for the clear understanding of the less importance 
of Reynolds number. 

(4) Generally speaking, a pressure drop is composed 
of frictional pressure drop including minor loss 
pressure drop caused by a change of flow path 
form to the comprehensive extent, gravitational 
pressure drop, and acceleration pressure drop. In 
steady-state single-phase liquid flow the 
acceleration pressure drop is usually small 
sufficient to be neglected. However, the 
gravitational pressure drop is another problem. It 
can be an important contribution. However, 
Hetsroni did not consider the effect of gravitation 
at least in explicit manners. 

(5) There is a no constrain in velocity scale. 
Arbitrary velocity scale is allowed. Is it right 
indeed? 

From the discussions above, it can be concluded that 
more elaborate derivation for the similarity is highly 
desired. 

 
3. Consideration of Gravity 

 
The Hetsroni’s identification and be modified into 

following equation on the consideration of gravity; 

( ), , , , , ,Hp g u L Dψ ρ ν ε=   (4) 

Using the Pi Theorem dimensionless groups can be 
obtained. 
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Last term in the parenthesis in right hand side of Eq. 
(5) appears newly. This is Froude number. In order to 
conserve Froude number the velocity scale should be a 
square root of length scale (or diameter scale). It is 
different from Hetsroni’s. 

Here, another try can be conducted. That is, when 
compensating for the gravity effect in pressure term, 
following relation can be setup. 
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And this equation can be transformed into 
dimensionless form; 
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This is the same result with Hetsroni. It means that 
the gravity effect in pressure should be compensated for 

when analyzing the core flow distribution on the base of 
Hetsroni’s. Velocity constrain is also untied. 
 

4. Derivation of Dimensionless Groups 
 
4.1 Derivation from general governing equation 

 
Single phase continuity equation does not produce 

any dimensionless group, and it need not be considered. 
Steady-state momentum equation is given by 

( )( ) ijpρ ρ⋅∇ = −∇ + +∇⋅u u gτ  (8) 

ijp= − +T Iτ    (9) 

, where bold u, g, τ ij, T, and I are velocity vector, 
gravity vector, shear stress tensor, stress tensor, and 
unit tensor, respectively. In order to nondimensionalize 
Eq. (8) following nondimensionalizing parameters are 
introduced. 
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, where subscript 0 means a reference point value. 
Dimensionless momentum equation has following form; 

( )* * * * * * *1 ˆ ijp
Fr τ⋅∇ = −∇ + +Π ∇ ⋅u u gτ   (11) 

, where ĝ  is dimensionless gravity unit vector. And 
there are several dimensionless groups; 
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4.2 Dimensionless shear stress number 

 
For the dimensionless shear stress number, shown in 

the last row in eq. (12) following simple relation can be 
considered. 

pdu
dy

τ µ= −     (13) 

, where μ , up, and y are viscosity, velocity parallel to 
wall surface, and coordinate perpendicular to the wall 
surface, respectively. And the dimensionless shear 
stress number can be further developed 
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Here two new dimensionless groups are drived. 
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Reynolds number 0

0

u LRe ρ
µ

=   (15) 

Dimensionless wall velocity gradient number 
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For the similarity the dimensionless wall velocity 
gradient number should be conserved, and up should 
have the same scale with reference velocity u0. In order 
to check this requirement a near wall velocity profile is 
to be reviewed, which is usually given by following wall 
function. 
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, where u# means shear velocity. Therefore, the 
variation of up along with y direction can be calculated. 
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, where Cf is fanning friction factor, and f is Darcy-
Weisbach friction factor, which is four times of fanning 
friction factor. In order to scale up by the reference 
velocity scale the friction factor can be adjusted by 
controlling wall roughness or flow diameter, and so on. 
Moreover, in order to conserve the dimensionless shear 
stress number under the condition of distorted 
Reynolds number in Eqs. (14) and (15) the friction factor 
also can be adjusted. Here it should be noticed that the 
Reynolds number tends to be saturated at high value. 
Thus, the relative wall roughness alone remains the key 
factor to determine friction factor. 
 
4.3 Euler number 

 
Pressure drop by friction can be extended to minor 

loss. 
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Thus, for the conservation of Euler number the 
pressure drop by summing both friction and minor loss 
should have the following relation; 
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, where K is minor loss coefficient. This means the 
sum of both minor loss coefficient and friction loss 
coefficient should be adjusted. This is easier handling 
method compared to handling each independently. By 
adjusting K easier conservation is possible. But care 
should be taken in that the flow path shape should be 
modified at a spot which does not affect much the flow 

field. Here K includes the effect of flow path shape 
change, entrance effect, the effect of turbulent, and so 
on. 
 
4.4 Froude number 

 
The similarity requirement of Froude number 

constrains the velocity scale to be a square root of 
length scale. 

 
4.5 Geometry constrain. 

 
As shown in the first term in Eq. (10) the aspect ratio 

should be same. This is newly revealed in this derivation, 
whereas Hetsroni did not explicitly point out. 

 
 

Table I: Geometry scale and property scale 

 1/5 Linear Scaled Model 

Scale Value Remarks 

Length lR 1/5  

Height lR 1/5  

Diameter lR 1/5  

Flow Area lR2 1/25  

Density ρ  R 1/0.855 Atmospheric  60℃ 
Water vs. atmospheric 

467.5℃ sodium  Viscosity μ  R 1/0.543 

 
Table II: Geometry design 

lR =1/5 SFR(mm)  Model 
(mm)  

Reactor vessel I.D.  8554  1710.8 

Reactor vessel Height  15444 3088.78 

Core Height  4220  844 

Core Shroud I.D  2808  561.6 

Lower core Shield I.D  3294  658.8 

Inlet Plenum Height  800  160 

Inlet Plenum Nozzle Dia.  305.2  61.04 

Pump Discharge Pipe Dia.  400  80 

DHX Outlet Height  254  50.8 

 
4. Scaling Factors for the Design of Model 

 
In order to check the applicability of the above theory, 

sample calculation was carried out for pool type SFR 
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design in KAERI. The model is scale by 1/5, and uses 
water instead of sodium. 

 

Table III: Flow and pressure drop scale according to 
velocity scale 

Linear 
Scaling 
Method  

Scale  Ideal 
Value  

비고  

Velocity 
scale (1) 

uR 1  Conserve 
velocity 

Flowrate  (ρ  R) 
( uR)( AR) 

1/21  

Re  (ρ  R) 
( uR)( LR)/ ( μ  R) 

1/7.7   

Press. 
drop 

(ρ  R) 
( uR)2 

1/0.86  

 
Velocity 
scale (2) 

uR 1/2  APR+ 
case 

Flowrate (ρ  R) 
( uR)( AR) 

1/42.7  

Re  (ρ  R) 
( uR)( LR)/ ( μ  R) 

1/15.7  

Press. 
drop 

(ρ  R) 
( uR)2 

1/3.4  

 
Velocity 
scale (3) 

uR 1/5 Same time 
scale 

Flowrate (ρ  R) 
( uR)( AR) 

1/106.8  

Re  (ρ  R) 
( uR)( LR)/ ( μ  R) 

1/39.3  

Press. 
drop 

(ρ  R) 
( uR)2 

1/21.4  

 
Velocity 
scale (4) 

uR  Conserve 
Fr  

Flowrate (ρ  R) 
( uR)( AR) 

1/47.9  

Re  (ρ  R) 
( uR)( LR)/ ( μ  R) 

1/17.6  

Press. 
drop  

(ρ  R) 
( uR)2 

1/4.27  

 

Table I is the important scale factors. Based on this 
table, Table II was obtained for various locations. Table 
III is the flow and pressure drop scale for various 
velocity scales. Obtained model dimensions are 
acceptable sizes.  Table IV is the Reynolds number in 
models according to velocity scale. All model Reynolds 
number are sufficiently large. 

 

Table IV: Scale of Reynolds number 

 
Flow  
(kg/s)  

Velocity  
(m/s)  Re  Re(p) 

/Re(m) 

Prototype  496.3  8.074  8.18E+08   

Model 
velocity 

(1/1)  
23.24  8.074  1.04E+06  7.87  

Model 
velocity 

 (1/2) 
11.62  4.04  5.20E+05  15.74 

Model 
velocity 

 (1/5) 
4.65  1.62  2.08E+05  39.24  

Model 
velocity 
 (1/2.24)  

10.37  3.60  4.63E+05  17.66 

 
5. Conclusions 

 
Refinement of Hetsroni’s approach for core flow 

distribution analysis was carried out and the derivation 
results were successfully applied to SFR mode design. 
 

REFERENCES 
 

[1] D.J. Euh, et al., A Flow and Pressure Distribution of 
APR+ Reactor Under the 4-Pump Running Conditions with A 
Balanced Flow Rate, Nuclear Engineering and Technology, 
Vol.44 No.7 pp.735-744,  2012 
[2] Hetsroni G., Use of Hydraulic Models in Nuclear Reactor 
Design, Nuclear Science and Engineering, Vol. 28, pp. 1-11, 
1967 
[3] Soon Joon Hong, Byung Chul Lee, Jae Sik Jung, Kyu 
Kwang Lee,  Hee Jin Kho, Multi-dimensional Similarity 
Analysis for Pool Thermal Mixing Phenomena, The 13th 
International Topical Meeting on Nuclear Reactor Thermal 
Hydraulics (NURETH-13), Kanazawa City, Ishikawa 
Prefecture, Japan, September 27-October 2, 2009, N13P1417 
[4] Soon-Joon Hong, Doo-Yong Lee, Jae-Hyuk Eoh, Tae-Ho 
Lee, Yong-Bum Lee, Scientific Design of a Large-scale Sodium 
Thermal-hydraulic Test Facility for KALIMER - Part I: 
Scientific facility design, Nuclear Engineering and Design 265 
(December 2013), pp.497– 513 


