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1. Introduction 

  

Subchannel analysis technology has been developed 

during past several decades, and still widely used in the 

design calculations for PWR cores. MATRA is a 

KAERI in-house subchannel code which adopted a 

homogeneous mixture model for two-phase flow, and 

some empirical models for considering the phasic slip 

and subcooled boiling effects. It includes an equal 

volume exchange with void drift two-phase mixing 

model. To extend code capability to the whole core 

subchannel analysis, pre-conditioned Krylov matrix 

solvers such as BiCGSTAB and GMRES are 

implemented in MATRA code as well as parallel 

computing algorithms using MPI and OPENMP. It is 

coded by fortran 90, and has some user friendly features 

such as graphic user interface. MATRA code was 

approved by Korean regulation body for design 

calculation of integral-type PWR named SMART. 

The major role subchannel code is to evaluate core 

thermal margin through the hot channel analysis and 

uncertainty evaluation for CHF predictions. In addition, 

it is potentially used for the best estimation of core 

thermal hydraulic field by incorporating into multi-

physics and/or multi-scale code systems. A preliminary 

study has been conducted to evaluate the performance 

of multi-physics two-way coupling between a KAERI 

in-house subchannel code MATRA and neutronics 

codes as well as fuel performance code[1] as shown in 

Fig. 1.  

 

 
Fig.1. Multi-physics code coupling with MATRA code 

 

In this study we examined a validation process for the 

subchannel code MATRA specifically in the prediction 

of subchannel void distributions. The primary objective 

of validation is to estimate a range within which the 

simulation modeling error lies. The experimental data 

for subchannel void distributions at steady state and 

transient conditions was provided on the framework of 

OECD/NEA UAM benchmark program[2]. The 

validation uncertainty of MATRA code was evaluated 

for a specific experimental condition by comparing the 

simulation result and experimental data. A validation 

process should be preceded by code and solution 

verification. However, quantification of verification 

uncertainty was not addressed in this study. 

 

2. Methods and Results 

 

2.1 Uncertainty analysis methodologies 

  

In order to examine a validation procedure of MATRA 

code, an accuracy analysis was conducted for a steady-

state void distribution problem on the basis of a typical 

standard issued by ASME at 2009[3]. The final goal of 

this standard is to evaluate the uncertainty range of the 

model error from the comparison error and the 

validation uncertainty. The comparison error (E) is 

defined as the difference between a simulation result (S) 

and a measured data (D). It contains all of the errors in 

the simulation and experimental results. The simulation 

error account for the model error(model), numerical 

error(num), and input error(input). Thus the model error 

can be estimated from the comparison error and 

standard uncertainties (num, input, and D) which are the 

estimates of errors. The validation uncertainty (uval) is 

defined as an estimate of standard deviation of the 

combined errors (num, input, and D). If those errors are 

statistically independent, then 

 
2 2 2

val num input D
u u u u    

 

From the comparison error and the validation 

uncertainty, we can estimate the uncertainty range of 

the model error as 

 
val model val

E u E u     

  

Two traditional approaches, sensitivity coefficient 

approach and Monte-Carlo approach, are used for the 

analysis of uncertainty propagated from the input 

parameters. In the sensitivity coefficient approach as 

shown in Fig. 2, the local sensitivity coefficient is 

calculated around the nominal condition. The 

simulation uncertainty due to the input parameter (input 

uncertainty, uinput) is calculated by combining the 

sensitivity coefficient and the coefficient of variation 

for each input parameter.  
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Fig.2. Uncertainty analysis by sensitivity coefficient 

approach 

 

In the Monte-Carlo approach as shown in Fig. 3, the 

input uncertainty to the simulation result was evaluated 

by a simple random sampling for each input parameter. 

It is compared with the random sampled experimental 

data that results in a distribution of the comparison error 

after a number of sampling. Combined uncertainty of 

input parameter and experimental data can be evaluated 

from the variance of a distribution of comparison error. 

 

 
Fig.3. Uncertainty analysis by Monte-Carlo approach 

  

2.2 Analysis of steady-state void distribution benchmark  

 

2.2.1 Uncertainty parameters 

 

A steady-state subchannel void distribution benchmark 

problem was selected for the uncertainty analysis. The 

test condition and measured data was obtained from the 

PSBT run 6.1122 as described in table 1. The 

subchannel void fraction was measured by a gamma-ray 

beam CT scanner, and void fraction averaged for the 

central four subchannels (as shown in Fig. 4) is 

provided at three different axial levels. The axial 

measuring location is near the upstream of mixing 

vaned grid. 

 

Table 1: Important parameters for UAM benchmark 

Parameter Value 

Test condition (Run 6.1122): 

Pressure, MPa 

Mass flux, kg/m
2
s 

Inlet temperature, 
o
C 

 

16.4 

4214 

306.7 

Bundle power, kW 3376 

Measured data (central 4-ch.): 

Z=2216 mm 

Z=2669 mm 

Z=3177 mm 

 

0.0000 

0.0699 

0.2394 

Void measurement uncertainty 4% (1σ) 

 

 
Fig.4. Cross-section of PSBT 5x5 test bundle 

 

In Monte-Carlo approach, the power distribution 

uncertainty was accounted for by re-normalizing the 

power distribution after a random sampling of power at 

every calculation node. Rod displacement uncertainty 

was considered by changing the rod position in diagonal 

direction. Positive variation means movement toward 

the corner of the test bundle. Uncertainty parameters 

employed in this study are listed in table 2. The 

probability distribution functions for all parameters are 

normal except the inlet temperature which has a flat 

distribution. 

 

Table 2: Uncertainty parameters 

Parameter Nominal 1-σ 

Boundary conditions: 

System pressure, MPa 

Inlet temperature, 
o
C 

Inlet mass flux, kg/m
2
s 

Heat flux, kW/m
2
 

Power distribution 

 

16.4 

306.7 

4214  

1237  

Non-uni 

 

0.33% 

1.0 

0.5% 

0.33% 

1.0% 

Geometry:, mm 

Rod diameter (corner) 

Rod displacement 

 

9.5 

0.0 

 

0.007 

0.15 

Modeling: 

Bundle friction factor 

Grid loss factor 

TDC 

Subcooled void 

Bulk void 

2-phase friction multiplier 

 

0.184Re
-0.2 

 

1.0/ 0.7/ 0.4 

0.04 

Levy 

Mod. Armand 

Armand 

 

10% 

10% 

21% 

10% 

10% 

10% 

 

2.2.2 Sensitivity coefficient approach 

 

The sensitivity coefficient (Si) is defined as the ratio 

between the percent change of void fraction to the 

percent change of input parameter. The magnitude of 

sensitivity coefficient for each uncertainty parameter is 

compared in Fig. 5. The coefficient of pressure has 

negative sign because an increase of pressure results in 
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a decrease of void fraction. The maximum sensitivity 

was appeared for the inlet temperature variation. 

Actually, the importance of a parameter to the overall 

uncertainty is not the same with the magnitude of the 

sensitivity coefficient as shown in Fig. 6. The 

contribution of a parameter to the overall uncertainty is 

defined as the importance factor (IF) which is 

calculated by combining the coefficient of variation and 

the sensitivity coefficient. For predicting subchannel 

void distribution, major contribution to the overall 

uncertainty was due to a subcooled void model, bulk 

void model, and turbulent mixing parameter. In the 

sensitivity coefficient approach, the input uncertainty is 

expressed as 

 
input

k

k

k k

u S





 
 
 

  

For the PSBT run 6.1122 problem, uinput without 

considering the power distribution uncertainty was 

calculated by 2.5%, 3.2%, and 3.2% at Z=2216, 2669, 

and 3177 mm, respectively. 

 

 
Fig.5. Comparison of sensitivity coefficients for 

subchannel void distribution 

 

 
Fig.6. Comparison of importance factors 

 

2.2.3 Monte-Carlo approach 

 

Nonlinear effects on the propagation of input parameter 

uncertainties were evaluated by employing a direct 

Monte-Carlo approach. Fig. 7. shows a propagation of 

input parameter uncertainties at each axial level from a 

direct simulation with 2000 simple random sampling. In 

Monte-Carlo simulation, the void uncertainty revealed a 

maximum near the center of axial level where the local 

heat flux reveals maximum due to a cosine shaped axial 

power profile. This trend was not observed by the local 

sensitivity approach which cannot account for the 

nonlinear effects on the void calculation accompanied 

with the axial power shape. Due to the Monte-Carlo 

approach without considering the power distribution 

uncertainty, uinput was calculated by 4.1%, 3.8%, and 2.8% 

at Z=2216, 2669, and 3177 mm, respectively. The 

power distribution uncertainty revealed a minor effect 

on uinput by increasing about 0.1% at Z=2216 mm.  

 

 
Fig.7. Propagation of input parameter uncertainties at 

each axial level 

 

2.2.4 Evaluation of validation uncertainty 

 

Ignoring the code numerical error, the validation 

uncertainty (uval) can be evaluated by combining the 

experimental data uncertainty (uD) and the input 

uncertainty (uinput). In the Monte-Carlo approach, a void 

fraction was calculated from a set of random sampled 

input parameters. Independently, we have a random 

sampled experimental data. From these two values, a 

distribution of comparison error was obtained for 

randomly sampled 2000 cases. It is illustrated in Fig. 8 

at the lower elevation level (Z=2216 mm). From 

Kolmogorov-Smirnov test, the parent distribution of the 

comparison error was regarded as a normal distribution 

with a 5 % significance level. As the result, the 

validation uncertainty with the power distribution 

uncertainty was calculated by 5.0%, 4.9%, and 4.0% at 

at Z=2216, 2669, and 3177 mm, respectively. 

 

In the sensitivity coefficient approach, if we do not 

consider the numerical solution uncertainty, uval is 

calculated by a root sum square of the experimental data 

uncertainty and the input uncertainty. That is, 

 
2 2

val D inputu uu    

 As the result, the validation uncertainty without the 

power distribution uncertainty was calculated by 4.7%, 

5.1%, and 5.1% at at Z=2216, 2669, and 3177 mm, 

respectively. 

 

The magnitude of uval for the two different approaches 

were compared in Fig. 9. In the Monte-carlo approach, 

the validation uncertainty decreases as the elevation 

increases. 
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Fig.8. Distribution of validation comparison error 

 

 
Fig.9. Comparison of validation uncertainties 

 

 

2.3 Analysis of transient void benchmark 

 

The input uncertainty for a transient void distribution 

was evaluated by employing a Monte-Carlo approach 

for a power increase transient in PSBT 5x5 test bundle. 

Fig. 10 shows transient history plot for the selected 

transient. Transient calculations were performed for 

2000 random sampled initial conditions. The average 

and standard deviation of predicted voids at each 

calculation time step is plotted in Fig. 11 in comparison 

with the experimental data at Z=2669 mm. As the result 

of analysis, it was found that the MATRA code tends to 

under-predict the void fraction as the axial elevation 

increases. It was also found that the input uncertainty 

decreases with increased axial level at the voiding 

region where the void fraction is approximately greater 

than 10%. 

 

 
Fig.10. Transient history plot 

 
Fig. 11. Comparison with experimental data during 

transient 

 

 

3. Conclusions 

 

The validation uncertainty of the MATRA code for 

predicting subchannel void distribution was evaluated 

for a single data point of void fraction measurement at a 

5x5 PWR test bundle on the framework of OECD UAM 

benchmark program. The validation standard 

uncertainties were evaluated as 4.2%, 3.9%, and 2.8% 

with the Monte-Carlo approach at the axial levels of 

2216 mm, 2669 mm, and 3177 mm, respectively. The 

sensitivity coefficient approach revealed similar results 

of uncertainties but did not account for the nonlinear 

effects on the uncertainty propagation. A preliminary 

analysis for the input uncertainty of transient void 

distribution was evaluated by employing a Monte-Carlo 

approach. 
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