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1. Introduction 
 

The break position, size, and leak flow rate of loss of 
coolant accidents (LOCAs) are essential information for 
recovering the cooling capability of the nuclear reactor 
core, for preventing the reactor core from melting down, 
and for managing severe accidents effectively.  

Therefore, in this study, an algorithm to predict leak 
flow rate has been developed to perform appropriate 
actions in the event of severe post-LOCA situations 
where the active safety injection systems do not actuate. 
Leak flow rate is a function of break size, differential 
pressure ( i.e., difference between internal and external 
reactor vessel pressure), temperature, and so on. 
Specially, the leak flow rate is strongly dependent on 
the break size and the differential pressure, but the 
break size is not measured and the integrity of pressure 
sensors is not assured in severe circumstances. 

In this study, a fuzzy neural network (FNN) model is 
proposed to predict the leak flow rate out of break, 
which has a direct impact on the important times (time 
approaching the core exit temperature that exceeds 
1200oF, core uncover time, reactor vessel failure time, 
etc.). Since FNN is a data-based model, it requires data 
to develop and verify itself. However, because actual 
severe accident data do not exist to the best of our 
knowledge, it is essential to obtain the data required in 
the proposed model using numerical simulations. These 
data were obtained by simulating severe accident 
scenarios for the optimized power reactor 1000 (OPR 
1000) using MAAP4 code [1]. 

 
2. FNN 

 
2.1 Fuzzy Inference System 

 
The conditional rule, which is described as an if-then 

rule, is generally used in the FIS, and it is composed of 
a pair of the antecedent and consequent [2]. This study 
uses the Takagi-Sugeno-type FIS [3]. The Takagi-
Sugeno-type FIS consists of three basic components, as 
shown in Fig.1. 

In the FIS, an arbitrary thi  fuzzy rule can be 
expressed as follows (first-order Takagi-Sugeno-type): 
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In Eq. (2), because the function ( ( ))if x k is expressed 

as the first-order polynomial of input variables, the FIS 
is called the first-order Takagi-Sugeno-type FIS. The 
number of N input and output training data 

( ) ( ( ), ( ))T Tz k k y k x  (where 1 2( ) ( ( ), ( ), ,T k x k x kx   

( )), 1, 2, , )mx k k N   are assumed to be available, and 

the input and output variables are normalized. The 
membership function of the fuzzy sets ,1 ,, ,i i mA A  for 

the ith fuzzy rule are denoted as 1 1( ), , ( )i im mx x  . In 

general, there is no special restriction on the shape of 
the membership functions. In this study, the symmetric 
Gaussian membership function is used to reduce the 
number of parameters to be optimized. 
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The parameter ijc indicates the center position of the 

peak, and ijs controls the width of the bell shape. 

The FIS output ˆ( )y k is calculated by weight-

averaging the fuzzy rule outputs ( )iy k  as follows: 
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: number of fuzzy rulesn  

 
Finally, the output ˆ( )y k  is expressed as the vector 

product as follows: 
 
ˆ( ) ( )Ty k k q     (7) 

 
where 
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The vector q  is called a consequent parameter vector 

that has ( 1)m n dimensions, and the vector ( )k  

consists of input data and membership function values. 
The predicted output for a total of N  input and output 
data pairs induced from Eq. (7) can be expressed as 
follows: 
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Fig.2 describes the calculation structure of the FNN 

model. 
 

2.2 Selection of Training Data 
 

The prediction performance of the FNN model is 
affected by the number of time-step data and data 
quality. Therefore, in this study, the training data that 
contains good information using the subtractive 
clustering (SC) technique are selected from all acquired 
data [4]. 

The data points generally exist in cluster-shaped form 
in the high-dimensional data space. It is clear that the 
center point data of each cluster have the most 
information because the center point data describes well 
the data characteristics of the corresponding cluster. 
Therefore, the FNN model is trained using the data 
points that are located in the center of each cluster. The 
center is not the physical center of a cluster but a data 
point with the maximum potential defined below. The 
SC technique uses Eq. (9) as a measure of the potential 
of each data, and the potential can be defined as a 
function of the Euclidean distance to all other input 
values [4]. 
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In Eq. (9), ar  is the radius of neighboring parts and it 

affects the potential significantly. Through Eq. (9), the 
potential of the data points is high because the 
Euclidean distance ( ) ( )k jx x  in Eq. (9) to all other 

input values is short when surrounded by a large 
number of neighboring data. The data point with the 
highest potential is selected as the first cluster center. 
That the data point is surrounded by a number of data 
means that the data point is located at the center of a 
cluster. After the first cluster center is determined, the 
potential of each data point is revised by the following 
formula: 
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where *(1)  is the potential value of the first cluster 

center, *(1)x  is its data point, and br  is the radius, 

which is normally greater than ar  in Eq. (9). 

As shown in Eq. (10), the data points near the first 
cluster center have a greatly reduced potential and are 
unlikely to be selected as the next cluster center. When 
the potential of all data points is revised according to Eq. 
(10), the datum with the highest remaining potential is 

selected as the second cluster center *(2)x . Eq. (10) is 

repeated by substituting *(1)  and *(1)x  with *( )i  

and *( )ix , respectively, until the required number ( tN ) 

of training data is obtained. In this study, tN  data 

points at the determined cluster centers are selected as 
the training data. 
 
2.3 Training of Fuzzy Inference System 
 

An FNN model developed to predict the leak flow 
rate from break is designed by training the given data. 
The FNN consists of a fuzzy inference system and its 
neuronal training system. When an FNN model is used 
to predict the leak flow rate, the prediction error 
depends on the selected input signals. Therefore, 
eliminating unnecessary input signals can reduce 
training time because the structure of the FNN model is 
simplified. Also, measured variables are not used 
because their integrity in severe accident circumstances 
has not been confirmed. 

In this study, the training data selected by the SC 
technique were used to develop the FNN model. The 
test data were used to verify the developed FNN model, 
and they are different from the training data set. The 
following fitness function is proposed to minimize the 
maximum error and root mean square (RMS) error. 
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The variable ( )y k  is the actual output value, and 

ˆ( )y k  is its value predicted using the FNN model. The 

constants 1  and 2  are weighting values that weight 

the maximum error and RMS error. If the antecedent 
parameters are determined using a genetic algorithm 
through selection, crossover, and mutation, the resulting 
parameters appear similar to Eq. (8) as a first-order 
combination. Therefore, the consequent parameter q  

can be calculated easily using the least squares method. 
That is, the consequent parameter q  is calculated to 

minimize an objective function. The objective function 
consists of the square error between the actual value 

( )y k  and its predicted value ˆ( )y k , and it is expressed 

as follows: 
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A solution for minimizing the above objective 

function can be obtained using the following equation: 
 

t ty q                 (13) 

 
where 
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In Eq. (13), the matrix t  has ( 1)tN m n   

dimensions. The parameter vector q  can be solved 

easily from the pseudo-inverse as follows: 
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3. Accident Simulation Data 

 
The proposed FNN model is applied to predict the 

leak flow rate from break caused by LOCAs. The 
training and test data of the proposed model is acquired 
by simulating severe accident scenarios using the 

MAAP4 code regarding the OPR1000 nuclear power 
plant. 

The simulation data is divided into the LOCA break 
position and break size. The break positions are divided 
into hot-leg, cold-leg, and SGT, and the break sizes are 
divided into a total of 210 steps. The break sizes range 
from 1/10000 to half of a double-ended guillotine break 
for hot-leg and cold-leg LOCAs, and the break sizes 
range from 1 to 210 tube ruptures for SGTR accidents. 
Through the simulations, data for a total of 630 severe 
accident scenarios are obtained. These data are 
composed of the simulation data from 210 hot-leg 
LOCAs, 210 cold-leg LOCAs, and 210 SGTRs. 

The leak flow rate is much correlated with the break 
size of LOCAs. The LOCA break size is not a measured 
variable, but a predicted variable that uses trend data for 
a short time early in the event proceeding to a severe 
accident. The LOCA classification algorithm for 
determining LOCA position and the LOCA size 
prediction algorithm were proposed in previous 
literature [5]-[7]. Because the LOCA break size can be 
predicted accurately with RMS error of about 0.4% 
from previous literature [6], the LOCA size can be used 
as an input variable for prediction leak flow rate. The 
LOCA break size signal is assumed to be predicted 
from the algorithm of previous study [6]. The predicted 
break size can be estimated accurately using several 
measured signals for a very short time (60 sec) after 
reactor shutdown [5]-[7]. Table I lists the prediction 
errors of the LOCA break size using the support vector 
regression model developed in a previous literature [6]. 
The LOCA break size is shown to be predicted 
accurately. Moreover, even if several measured 
variables are used to predict the LOCA break size, their 
integrity is not a problem because measured values are 
used for an initial short time after reactor shutdown 
(maximum of 60 sec). 

 
4. Application 

 
The input variables for prediction the leak flow rate 

are the time elapsed after reactor shutdown and the 
predicted break size. The time input to the FNN is the 
time elapsed from the reactor shutdown instant. The 
break sizes are values predicted with RMS error of 
about 0.4%. There different types of FNN models are 
developed according to the break position, such as hot-
leg, cold-leg, and SGTR. Also, two different types of 
FNN models are developed according to the break size, 
such as small and large LOCAs, respectively: The FNN 
model for 30 smaller break sizes and the FNN model 
for the remaining 180 larger break sizes. Fig. 3 shows 
the integrated 6 (3 break positions times 2 break size 
groups) FNN models developed in this study to predict 
leak flow rate. The LOCA break position and size are 
determined through support vector classification (SVC) 
models and support vector regression (SVR) models 
developed previously [6]. 

The parameter values that are concerned with the 
genetic algorithm are as follows: the number of 
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crossover probability is 100%, mutation probability is 
0.05%, and population size is 20. 

The errors were calculated relatively, compared to 
the maximum leak flow rate of the corresponding break 
size. The performance of the FNN model is gradually 
being improved according to the increase of the fuzzy 
rule number from 5 to 30 for hot-leg LOCAs and cold-
leg LOCAs but its improving quantity is not significant. 
Therefore, for hot-leg and cold-leg LOCAs 30 fuzzy 
rules are sufficient to predict the leak flow rate from 
LOCAs. For SGTRs, the performance of the FNN 
model is not being improved according to the increase 
of the fuzzy rule number from 5 to 30 and the FNN 
model with 5 fuzzy rules provides accurate prediction 
with 2.77% RMS error. Therefore, the FNN model with 
30 fuzzy rules is the best to predict the leak flow rate in 
hot-leg and cold-leg LOCAs and the FNN model with 5 
fuzzy rules is the best for SGTRs. 

The FNN models use the predicted LOCA break size 
as an input. It is necessary to analyze the performance 
degradation of the FNN models due to the prediction 
error of LOCA break size. Table II shows the 
performance of the FNN models in case the LOCA 
beak size is assumed to be predicted with less random 
error than 5%. In this case, the performance degradation 
of the FNN models due to input error existence is not 
shown. Table III shows the performance of the FNN 
models in case the LOCA beak size is assumed to have 
5% over-prediction error. The assumption of 5% over-
prediction error is rather excessive because LOCA 
break size can be predicted accurately with RMS error 
of about 0.4%. Nonetheless, the performance 
degradation due to the prediction error of LOCA break 
size is slight.  

Table IV shows the performance of the optimized 
FNN models. This table indicates that the RMS errors 
for the test data are approximately 1.97%, 1.47%, and 
2.77% for the hot-leg LOCA, cold-leg LOCA, and 
SGTR, respectively. In case the LOCA beak size is 
assumed to be predicted with less random error than 5%, 
the RMS errors for the test data are approximately 
1.66%, 1.68%, and 2.67% for the hot-leg LOCA, cold-
leg LOCA, and SGTR, respectively. Also, in case the 
LOCA beak size is assumed to have 5% over-prediction 
error, the RMS errors for the test data are approximately 
2.23%, 1.90%, and 2.93% for the hot-leg LOCA, cold-
leg LOCA, and SGTR, respectively. It is known that the 
leak flow rate can be predicted accurately using the 
developed FNN models. 

Fig. 4, 5 and 6 show the predicted leak flow rate and 
their errors for the cold-leg LOCA. The test data are 
different from the data used to develop the FNN model, 
and consists of the elapsed time after reactor shutdown, 
the predicted LOCA size, and the leak flow rate. For 
this study, 100 data points in each LOCA position, such 
as hot-leg LOCA, cold-leg LOCA, and SGTR, were 
selected as test data points.  

It is important to recover the reactor core cooling by 
assuring a sufficient injection flow rate in severe post-
LOCA situations. Therefore, it is expected that the FNN 

model that predicts the leak flow rate will be useful for 
managing severe accidents. 
 

5. Conclusion 
 

In this study, FNN model was developed to predict 
the leak flow rate in severe post-LOCA circumstances. 
The training data were selected from among all the 
acquired data using an SC method to train the proposed 
FNN model with more informative data. The developed 
FNN model predicted the leak flow rate using the time 
elapsed after reactor shutdown and the predicted break 
size, and its validity was verified in the basis of the 
simulation data of OPR1000 using MAAP4 code. 

The simulations showed that the developed FNN 
model accurately predicted the leak flow rate with less 
error than 3%.  

Therefore, it is expected that the FNN model will be 
helpful for providing effective information for operators 
in severe post-LOCA situations where the active safety 
injection systems do not actuate. 
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Table I: Prediction errors of LOCA break size [2] 

 
Training data (%) Test data (%) 
RMS 
error 

Maximum 
error 

RMS 
error 

Maximum 
error 

Hot-leg 
LOCA

0.30 0.97 0.41 0.66 

Cold-leg 
LOCA

0.33 1.10 0.11 0.19 

SGTR 0.42 1.23 0.56 0.74 
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Table II: Performance of FNN model assuming LOCA size 

prediction error (random prediction error under 5%)  
 

Break 
position 

5 fuzzy rules 10 fuzzy rules 
RMS 

error (%) 
Max.  

error (%) 
RMS 

error (%) 
Max.  

error (%)
Hot-leg 
LOCA 

3.07 23.02 2.46 12.21 

Cold-leg 
LOCA 

2.92 20.57 1.83 11.42 

SGTR 2.67 10.59 2.35 9.62 

Break 
position 

20 fuzzy rules 30 fuzzy rules 
RMS 

error (%) 
Max.  

error (%) 
RMS 

error (%) 
Max.  

error (%)
Hot-leg 
LOCA 

4.16 35.63 1.66 8.94 

Cold-leg 
LOCA 

1.51 10.91 1.68 9.12 

SGTR 4.61 42.13 2.16 11.64 
 

Table III: Performance of FNN model assuming LOCA size 
prediction error (5% over-predection)  

 

Break 
position 

5 fuzzy rules 10 fuzzy rules 
RMS 

error (%) 
Max.  

error (%) 
RMS 

error (%) 
Max.  

error (%)
Hot-leg 
LOCA 

3.31 23.02 11.60 101.2 

Cold-leg 
LOCA 

3.04 21.61 1.90 12.02 

SGTR 2.93 13.18 4.54 38.16 

Break 
position 

20 fuzzy rules 30 fuzzy rules 
RMS 

error (%) 
Max.  

error (%) 
RMS 

error (%) 
Max.  

error (%)
Hot-leg 
LOCA 

2.75 14.10 2.23 14.82 

Cold-leg 
LOCA 

1.60 12.01 1.90 10.32 

SGTR 4.61 41.63 3.29 17.52 
 

Table IV: Performance of the optimized FNN models 

Break 
position 

No LOCA size 
prediction error 

(%) 

Random LOCA 
size prediction 
error under 5% 

(%) 

5% LOCA size 
over-prediction 

error (%) 

RMS 
error 

Max. 
error 

RMS 
error 

Max. 
error 

RMS 
error

Max. 
error

Hot-leg 
LOCA 

1.97 13.10 1.66 8.94 2.23 14.82

Cold-leg 
LOCA 

1.47 8.11 1.68 9.12 1.90 10.32

SGTR 2.77 11.01 2.67 10.59 2.93 13.18
 

iny Wfuzzy set in Wfuzzy set in Vinx V

Fig. 1. Fuzzy Inference System (Takagi-Sugeno-type FIS). 
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Fig. 2. Fuzzy neural network (FNN). 

 
Fig. 3. Prediction of leak flow rate using 6 integrated FNN 
models. 
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Fig. 4. Leak flow rate error versus elapsed time and break size. 
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Fig. 5. Leak flow rate error versus elapsed time. 
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 Fig. 6. Leak flow rate error versus break size. 


