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1. Introduction 

 

Code surrogates are mathematical models that 

approximate the input/output relationship of more 

complex computer code simulations.  Surrogates, also 

called response surfaces, metamodels, and code 

emulators, are fast running making them attractive to 

applications such as design optimization and 

uncertainty quantification where many simulations need 

to be performed and direct use of the computer code is 

computationally prohibitive.  In the nuclear safety field, 

response surfaces were used in the first demonstration 

of the code scaling, applicability, and uncertainty 

(CSAU) methodology to quantify the uncertainty of the 

peak clad temperature (PCT) during a large-break loss-

of-coolant accident (LBLOCA).  Surrogates could have 

applications in other nuclear safety areas such as 

dynamic probabilistic safety assessment (PSA).  

Dynamic PSA attempts to couple the probabilistic 

nature of failure events, component transitions, and 

human reliability to deterministic calculations of time-

dependent nuclear power plant (NPP) responses usually 

through the use of thermal-hydraulic (TH) system codes.  

The overall mathematical complexity of the dynamic 

PSA architectures with many embedded computational 

expensive TH code calculations with large input/output 

data streams have limited realistic studies of NPPs. 

This paper presents a time-dependent surrogate 

model for the recirculation phase of a hot leg LBLOCA 

in the OPR-1000.  The surrogate model is developed 

through the ACE algorithm [1], a powerful 

nonparametric regression technique, trained on 

RELAP5 simulations of the LBLOCA.  Benchmarking 

of the surrogate is presented and an application to a 

simplified dynamic event tree (DET).             

 

2. Modeling Recirculation Phase of LBLOCA 

 

2.1. OPR-1000 systems description 

 

An  LBLOCA is postulated to occur in the hot leg of 

the OPR-1000, a two-loop pressurized water reactor 

(PWR) with a rated power of 2815 MWt.  The reactor 

coolant system (RCS) consists of the core, 4 cold legs, 2 

hot legs, 2 steam generators, and pressurizer.  The 

safety injection (SI) systems replenish the RCS 

inventory following a LOCA and ensure long term 

cooling of the core.  The high pressure safety injection 

(HPSI) system, low pressure safety injection (LPSI) 

system, and safety injection tanks (SIT) interface with 

the RCS at the SI headers on the cold leg piping. The 

HPSI and LPSI systems each have two pumps with 

design flows of 815 gpm and 4200 gpm, respectively.  

The containment spray (CS) system suppresses 

containment pressure and temperature and removes heat 

to the ultimate heat sink.  The containment spray (CS) 

system consists of two pumps with design flows of 

3890 gpm, shutdown cooling heat exchangers, and 

spray headers.   

 

2.2. TH behavior during LBLOCA 

 

   Following the initial blowdown and reflood, the 

LBLOCA can be divided into 3 major phases for the 

long term cooling of the core: injection phase, 

recirculation phase, and simultaneous hot and cold leg 

injection.  During the injection phase, all HPSI, LPSI, 

and CS pumps in their initial configuration draw suction 

from the refueling water storage tank (RWST).  When 

the RWST inventory is depleted, the recirculation 

actuation signal (RAS) is sent and the LPSI pumps are 

automatically tripped.  The HPSI and CS pump suction 

are automatically switched to the containment sumps 

where spilled water from the break and condensed 

steam and CS water collects.  Operators must manually 

isolate the RWST and verify that sufficient sump 

conditions exist for recirculation.  The sump water 

temperature can be much higher than the RWST water 

temperature and is a function of the total energy 

released from the RCS through the break flow and the 

operation of the CS system integrated over the transient 

time.  At some time after recirculation begins, operators 

must manually realign some of the HPSI pump 

discharge to the hot legs for simultaneous hot and cold 

leg injection to ensure a sufficient flushing flow exists 

across the core to prevent boron precipitation.  

The combined flow rate of the HPSI and LPSI pumps 

injecting large volumes of cold water from RWST to 

the RCS results in the single-phase flow and subcooling 

of the core during the injection phase.  The RAS can be 

received as early as 20 minutes after a LBLOCA occurs 

when the decay power in the core is relatively high.  

The combination of high decay power, reduced SI flow 

rate after trip of LPSI pumps, and SI water from the 

sump that is closer to saturation conditions cause a 

rapid transition into two-phase flow in the top of the 

core increasing core boil-off and dropping the water 

level at the onset of recirculation.  Subcooling of the 

core is gradually restored through decreasing decay 

power with time and continued recirculation through 

the HPSI and CS systems.  This study investigates the 

time-dependent behavior of the core subcooling subject 

to uncertainties of the containment sump conditions and 

HPSI pump performance degradations.  A surrogate 
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model is constructed to predict the fraction of core 

subcooling.   

Additionally, during the injection phase and early on 

in recirculation, reflux heat transfer conditions can exist 

in the steam generator (SG) of the intact loop.  Because 

the RCS rapidly depressurizes during the blowdown 

and most of the RCS inventory is replaced with cold SI 

water, the primary side pressure and temperature can be 

lower than the large inventory of water in the shell side 

of the SG.  Reflux heat transfer superheats residual 

steam and water on the tube side which can circulate 

through the cold leg piping mixing with SI water.  

Although the mass flow rates in the intact loop are 

small, the mixing can raise the enthalpy of the SI water 

reaching the core.   

 

2.3. RELAP5 model 

           

A RELAP5/MOD3.3 model of the Ulchin Units 3&4 

NPP (UCN3&4), a reference OPR-1000, was used to 

simulate the LBLOCA and recirculation phase.  The 

model is comprised of 250 hydrodynamic volumes, 280 

hydrodynamic junctions and 259 heat structure 

representing all of the major components of the RCS.  

The RCS nodalization is shown in Fig. 1.   

The HPSI and LPSI systems are modeled as time-

dependent volumes and junctions representing user 

defined time and system state dependent boundary 

conditions to the model.  The pumps are modeled as 

junctions actuated by trip logic.  Flow rate curves for 

the pumps are input as table lookup functions of 

pressure in the discharge legs of the cold leg piping.  A 

degradation factor is applied to the HPSI pump curve to 

adjust flow rates.  Time-dependent volumes 

representing the SI water source from the RWST or 

containment sumps define the temperature water 

flowing through the junctions. 

RELAP5 is usually not used for containment analysis 

so the containment volumes and CS system are not 

explicitly modeled.  The hot leg break is connected to 

time-dependent volumes representing the containment 

compartments providing sinks for water and steam that 

exit the break.  A time-dependent pressure curve 

characteristic of a containment response to LBLOCA is 

input for the containment volumes.       

 
Fig. 1. Nodalization for RELAP5 UCN3&4 model. 

2.3. RELAP5 simulations 

 

    The RELAP5 UCN3&4 model was used to simulate 

13 sequences of the recirculation phase of the hot leg 

LBLOCA.  First, the injection phase of the LBLOCA 

was simulated assuming all HPSI, LPSI, and CS pumps 

operate at design capacities and the RAS time was 

calculated to occur at 1680 s assuming a 7.5% level 

setpoint for the RWST.  The simulation was restarted 

for each of the 13 recirculation phase sequences with 

the assumed flow rate of the HPSI pumps and sump 

water temperature listed in Table I.  HPSI flow rates 

were varied from 100% to 25% to represent a spectrum 

of possible degraded HPSI operation including 1 failed 

pump and decreased net positive suction head (NPSH).  

The sump water temperatures were varied from 300 K, 

the temperature of the RWST water during the injection 

phase, and 370 K which is close to saturation 

temperature of the RCS during recirculation.  For 

sequences 12 and 13, the sump water temperature 

followed the ramp curve depicted in Fig. 2 where the 

temperature is assumed to linearly increase to saturation 

from the RAS time to 10,000 s and linearly decrease to 

325 K at 20,000 s.   

 

Table I. Design matrix of HPSI flow rate and 

containment sump temperature for RELAP5 

recirculation phase simulations 

Seq. # HPSI Flow Rate  
Sump 

Temperature (K) 

1 100% 300 

2 100% 325 

3 100% 350 

4 75% 300 

5 75% 325 

6 75% 350 

7 75% 370 

8 50% 300 

9 50% 325 

10 50% 350 

11 25% 300 

12 100% Ramp 

13 50% Ramp 

 

 
Fig. 2. Containment sump temperature curve for ramp 

cases in design matrix. 
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    The results from the RELAP5 simulations of the 

recirculation phase are shown in Fig. 3.  The plots of 

the subcooled water level V, the fraction of the core 

volume where single-phase flow and subcooling TH 

conditions exist, are normalized to the height of the top 

of the active fuel in the core.  Figure 3 shows the rapid 

transition to two-phase flow in the core following RAS 

and the trip of the LPSI pumps and the gradual recovery 

of the subcooled water level with time.  The transient 

behavior appears to be sensitive to both the HPSI flow 

rate and sump water temperature.          

 

 
Fig. 3. Subcooled water level during recirculation.    

 

3. Surrogate Model for Recirculation Phase  

 

The computation time for each RELAP5 simulation 

presented in previous section is on the order of hours.  

In the context of PSA, there are several systems and 

associated subsystems and components whose 

successful operation, failures, and degradations 

determine the HPSI flow rate and sump water 

temperature that are the time-dependent boundary 

conditions to the UCN3&4 model.  A dynamic PSA 

study may require many simulations to resolve the plant 

behavior subject to the performance of these 

components and systems.   In this section, we construct 

a surrogate model capable of predicting the subcooled 

water level in the core during the recirculation phase.  

The surrogate structure is proposed as a discrete time 

dynamic model and the functional form of the model is 

learned by performing regression on the RELAP5 

simulations through the ACE algorithm. 

 

3.1. Alternating conditional expectation algorithm  

 

 The ACE algorithm is a generalized nonparametric 

method that yields an optimal relationship between the 

dependent variable y and multiple independent variables 

{xi,i=1,…,p} by obtaining one-dimensional 

transformations      and        of each variable 

through an iterative procedure that maximizes the 

statistical correlation between      and ∑       
 
   .  A 

full derivation and algorithmic details can be found in 

Ref. [1].  The ACE algorithm procedure applied to a 

multivariate data set (X,y)={xij,yj, i=1,..,p, j=1,…,n} is 

given in Table II.    

 

Table II. ACE algorithm procedure 

1) Initialize  θ(y)  = y/||y||  and all ϕi(xi) = 0 

2) 

 

Calculate ϕi(xi) conditioned on xi.  Sort θ(y) and 

ϕl(xl) in ascending order of xi and evaluate for i =   

1,..,p: 
 

  (   )   [     ∑       
 
          ]    

                 [      ∑        
 
       ]  

 

Iterate through all i until squared error fails to 

decrease: 

  (         )  
 

 
∑ [ (  )  ∑   (   )

 
   ]

  
     

 

All θ(y) are held constant and ϕi(xi)  is updated 

after each iteration. 
 

3) 

 

Calculate θ(y) conditioned on y.  Sort ϕi(xi) in 

ascending order of y and evaluate: 

 

 (  )  
 [∑            

 
   ]

‖ [∑            
 
   

]‖
 

 [∑           
 
   ]

‖ [∑           
 
   

]‖
  

 

4) 
Alternate between steps 2 and 3 until 

  (         ) does not change 

 

The key feature of the ACE algorithm is the localized 

smoothing operation S[.] in steps 2 and 3.  The 

smoothing operation is the conditional expectation from 

which the name of the ACE algorithm is derived.  The 

smoothing operation is 

 

                      [     ]  ∑     
   
      ,         (1) 

 

a weighted average about a window of data points 

around point zj.  Each data smooth is a form of locally 

weighted regression.  The weights Wk and window 

width 2M are determined by the type of smoothing 

operation which must be chosen by the user.  This study 
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used the ‘acepack’ package available in the R statistical 

program using the supersmoother [2], which adaptively 

varies the window width due to the local data 

characteristics.  The ACE algorithm yields the nonlinear 

relationship through the transformations 

 

                           ∑       
 
       .   (2) 

 

The final nonlinear mapping from the inputs to the 

output variable involves taking the inverse transform 

 

                              (∑       
 
   ) .                 (3) 

 

The model uncertainty v of the ACE surrogate can 

be estimated by calculating the weighted variance of θ(y) 

using the converged transformed data points θ(yj) from 

the last iteration of the ACE algorithm [3].  The 

weighted variance using Eq. (1) is 

 

  [     ]  
∑   (    [     ])

    
     

    

  
∑   
   
     

  .    (4) 

 

3.2. ACE surrogate for recirculation phase 

 

In typical applications, surrogates are usually static 

input-output nonlinear mappings that predict limiting 

values of the output variable, such as PCT, without 

computing a complete time-dependent history of the 

system behavior.  However, in dynamic PSA 

applications, the system state evolution under different 

operation conditions coupled to interactions with 

component transitions and human operator actions that 

can lead to safe or unsafe plant states is the desired 

result.  Obtaining the system state evolution trajectories 

requires that complete simulations be performed.  A 

dynamic code surrogate that can predict time-dependent 

system behavior will significantly reduce the 

computational burden compared to direct calculations 

with a TH code.    

We propose the surrogate to take the general 

structure of a discrete time dynamic model 

 

                   [                    ] , (5) 

 

where system state x is advanced over discrete time 

steps { Δt = tk+1-tk} to predict the future state x(tk+1) 

from the previous state estimate x(tk) and the input 

parameter vector u subject to model noise or 

uncertainty v.  F[.] is  possibly a nonlinear function.  

The system state is recursively calculated from t0 → tN 

by setting x(tk+1) → x(tk) after each evaluation of Eq. (5).  

The discrete time dynamic model implicitly treats the 

absolute transient time tk as input parameters, which 

may be time-dependent functions.       

For the recirculation phase surrogate, the system 

state variable is the subcooled water level V(t).  The 

input parameters are sources of mass and energy flux 

into the RCS that drive the TH behavior.  Four input 

variables are decay power qd(t), subcooling enthalpy 

flow rate of the HPSI system hpwp, mass flow rate of 

HPSI system wp, and ratio of subcooling enthalpy flow 

rate to decay power hpwp/ qd(t) which is a dimensionless 

number similar to the Stanton number.  Equation (5) 

becomes 

 

               *              
    

  
      +.      (6) 

 

The purpose of the ACE algorithm is to the learn the 

functional form of F[.] from data of the 13 RELAP5 

simulations.  The decay power curve is available from 

the RELAP5 output and is the same for all sequences.  

The subcooling enthalpy flow rate of the HPSI system 

is defined as hpwp = (hsat - hsump)wp where hsat is the 

saturation enthalpy of the fluid in the RCS and hsump is 

the enthalpy of the water in the containment sumps 

which is directly determined by the assumed 

temperature of the sump water during recirculation.  

The subcooling enthalpy flow rate represents the 

amount energy per unit time the liquid SI water can 

absorb without reaching saturation and generating 

steam.  The mass flow rate of the HPSI system is also 

directly determined by the assumed flow rate used for 

each sequence.   

For each sequence, Vn+1 and Vn were extracted at Δt = 

20 s time steps from the RELAP5 output observing V 

does not change by more than a few percent in the data 

for this time scale.  Combined with the decay power 

data and assumed HPSI flow rates and sump 

temperatures, the 13 RELAP5 sequences provide 15916 

data points representing realizations of Eq. (5).  Figure 

4 shows the scatterplots of Vn+1 as a function of each 

input variable.  Visual examination of the scatterplots 

reveal very little information about the functional form 

of Eq. (6) except the strong linear correlation between 

Vn+1 and Vn which is expected from the recursive 

relationship of the discrete time dynamic model 

structure.      

   Applying the ACE algorithm to the data sets yields 

the transformations shown in Fig. 5.  The 

transformations provide smooth one-dimensional 

function forms for each variable and Eq. (6) is  

explicitly written as 

 

                  (    )    (  )  

                                      (
    

  
)            

 

                    (       ∑   (  )    
   ) .      (7) 

 

One strength of the ACE algorithm as a nonparametric 

regression technique is that no a priori assumptions had 

to be made about the functional forms of the 

transformations in Fig. (5).  The transformations were 

automatically learned by the ACE algorithm from the 

noisy RELAP5 data shown in Fig. (4). 

   Table III lists the ranges of the independent variable 

transformations and comparison to the range of θ(Vn+1) 
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in the transform space as a measure of sensitivity or the 

importance of each variable.  The range of the recursive 

component ϕ5(Vn) of the surrogate is equal to 73% of 

θ(Vn+1) followed by subcooling enthalpy flow ϕ2(hpwp) 

and decay power ϕ1(qd) at 33% and 23%, respectively.  

The consequence of the discrete time dynamic system 

model structure is the direct correlation between Vn+1 

and Vn evident through the transformations ϕ5(Vn) and 

θ(Vn+1) which are nearly linear.  The time step limits the 

deviation of Vn+1 from Vn within a few percent so Vn 

must be the most important parameter that determines 

Vn+1.  The other variables determine whether the water 

level increases or decreases from Vn.  

 

 
Fig. 4.  Scatterplots of subcooled water level V vs. input 

variables for ACE surrogate. 

 

 

Table III. Range and sensitivity of ACE transformations 

 min max Δ  % of θ 

θ -1.91 2.08 3.99 100 

   -0.39 0.54 0.93 23 

   -0.74 0.58 1.32 33 

   -0.06 0.04 0.10 3 

   -0.11 0.42 0.53 13 

   -1.43 1.47 2.90 73 

 

 
Fig. 5.  ACE transformations of smoothed RELAP5 

data for subcooled water level surrogate. 

 

Figure 6 shows the estimated variance of θ(Vn+1) 

calculated through Eq. (4).  When the surrogate is used 

to predict Vn+1 with Eq. (7), v represented by the 

variance of θ(Vn+1) must be propagated through the 

inverse transform θ
-1

(.) to obtain an uncertainty for Vn+1. 

Assuming the errors are normally distributed, a standard 

deviation of +/-0.05 is a good approximation of the 

uncertainty of Vn+1 over the range of Vn+1. 

    

Fig. 6.  Variance estimate of θ(Vn+1). 

 

3.3. Benchmarking surrogate vs. RELAP5 results 

 

To test the predictive accuracy of the surrogate, the 

RELAP5 sequences in the training set are simulated 

with the ACE surrogate.  RELAP5 sequences and the 

ACE predictions are compared in Fig. 7.  The standard 

deviations presented with the ACE results represent the 

uncertainty of the ACE predictions.  Two additional 

RELAP5 simulations were performed, Sequence 14 and 

Sequence 15, comprising a test set for cross-validation.  

Sequence 14 assumed 100% HPSI flow rate and a 

constant sump temperature of 335 K.  Sequence 15 

assumed 100% HPSI flow rate and a time-dependent 
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sump temperature curve shown in Fig. 8 obtained from 

the UCN3&4 FSAR [4]. 

 
Fig. 7. Comparison of RELAP5 simulations and ACE 

surrogate model estimates for recirculation phase.  

 
Fig. 8. Containment sump temperature curve for 

Sequence 15. 

 

   The surrogate simulations were initiated at a transient 

time of 1680 s, the time of the RAS, and subcooled 

water level V0 = 1.  Using 20 s time steps, Eq. (7) was 

evaluated to obtain Vn+1.  The ACE model uncertainty v 

discussed in Section 3 introduces uncertainty into each 

prediction Vn+1.  From the recursive relationship Vn+1 → 

Vn, the state estimate Vn becomes an uncertain input 

parameter to the surrogate, first undergoing the 

nonlinear transformation ϕ5(.) and subsequent 

transformation θ
-1

(.) after being combined with the 

model uncertainty.  Therefore, the uncertainty of Vn+1 is 

a function of two random variables, v and Vn, 

undergoing nontrivial nonlinear transformations.  The 

unscented transformation (UT) [3,5] is employed as an 

efficient way to estimate the variance of Vn+1.  The UT 

deterministically selects samples from the distributions 

of v and Vn and estimates the variance from the output 

statistics of the surrogate evaluated at these points.  

   The surrogate appears to reproduce the RELAP5 

results with reasonably accuracy for all of the sequences 

including the cross-validation cases.  The surrogate 

trajectories are smooth curves compared to the noisy 

RELAP5 data.  Portions of the RCS remain voided and 

the localized TH conditions in the core where the 

single-phase flow is transitioning to two-phase flow 

display high frequency fluctuations due to the low 

pressure and low flow rate conditions during 

recirculation.  The detailed RELAP5 UCN3&4 model 

can predict the oscillatory conditions evident in the 

water level data, whereas the surrogate was derived 

from a few simple variables representing the mass and 

energy flux boundary conditions of the RCS.  The 

surrogate was intended to predict the macroscopic 

behavior of the system and was capable of learning this 

behavior from noisy data, a clear benefit of the ACE 

algorithm. The surrogate did not include any input 

variables that describe the heat transfer and 

condensation or superheating of steam in the steam 

generator of the intact loop.  
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4. Dynamic Event Tree Application 

 

   In this section, the applicability of surrogates to 

dynamic PSA is demonstrated by studying a simplified 

DET of the recirculation phase.  The transition from the 

injection phase to the recirculation phase at RAS time 

involves significant changes in the HPSI system 

configuration and uncertain conditions within the 

containment sumps.  The DET specifically considers 

degradations to the HPSI system related to Generic 

Safety Issue 191, debris accumulation at the 

containment sump screens resulting in the loss of NPSH, 

and operator action time to diagnose and repair a failed 

HPSI pump.  The fast computation time of the surrogate 

model allows the DET to be simulated by a direct 

Monte Carlo (MC) method.  The MC solution serves as 

a benchmark to validate a newly proposed method using 

the UT to generate degraded component states and 

branch point times in the DET.  

   The initiating event for the DET is failure of HPSI 

pump B at the RAS time.  HPSI pump A is assumed to 

have been successfully realigned to a containment sump 

and operates in recirculation mode.  To account for 

possible degraded sump conditions, the available NPSH 

to pump A is assumed to be uniformly distributed U[7 ft, 

20 ft].  The flow rate of pump A is obtained from the 

NPSH curve for OPR-1000 HPSI pumps from [4].  The 

time for the operator diagnosis of the failed state of 

HPSI pump B and repairs is assumed to be normally 

distributed N[4500 s, 1800 s].  Once repaired and 

operating, the available NPSH for pump B is uniformly 

distributed U[7 ft, 20 ft].  The sump water temperature 

used to calculate hp is assumed to be normally 

distributed N[345 K, 10 K].  These four variables 

reflecting an uncertain repair time, degraded sump 

conditions, and uncertain containment conditions are 

the input parameters to the DET.   

The DET is evaluated using the MC method with 

10,000 simulations by randomly sampling the 

distributions of the 4 uncertain variables.  The surrogate 

is used to calculate the subcooled water level in the core 

for each sequence with wp = wpumpA for t < trepair and wp 

= wpumpA + wpumpB for t > trepair.  Each simulation is 

terminated at 12,000 s.  Figure 9 shows 100 selected 

simulations.  Each trajectory V(t) corresponds to a 

unique branch of the DET.  The water level can vary by 

over 50% of the active core height during most of the 

transient, suggesting that the plant behavior can be 

highly variable even with 1 of 2 HPSI pumps always 

functioning within operational limits. 

The DET is evaluated a second time using the UT 

method requiring only 9 simulations.  Figure 10 shows 

the 9 UT simulations from which the mean and variance 

of the water level trajectories subject to the uncertainty 

of the 4 variables are estimated.  The mean and variance 

are also calculated from the MC simulations, and Fig. 

11 shows a comparison of the UT estimate to the MC 

benchmark.  The UT and MC results are in close 

agreement.  Clearly, performing 10,000 RELAP5 

simulations is unreasonable so the surrogate is a useful 

tool to facilitate direct MC simulation of DET and 

benchmark more efficient sampling methods such as the 

UT that would enable direct use of TH codes in 

dynamic PSA applications. 

 
Fig. 9. 100 Monte Carlo simulations of repair of 

HSPI pump DET. 

 

 
Fig. 10. Unscented transformation simulations of repair 

of HPSI pump DET. 

 

Fig. 11.  Monte Carlo vs. UT estimates of mean and 

variance for the repair of HPSI pump DET. 

 

5. Discussion and Future Work 

 

   A time-dependent surrogate model to predict core 

subcooling during the recirculation phase of a hot leg 

LBLOCA in the OPR-1000 has been developed.  The 

surrogate assumed the structure of a general discrete 

time dynamic model and learned the nonlinear 

functional form by performing nonparametric 

regression on RELAP5 simulations with the ACE 

algorithm.  The surrogate model input parameters 

represent mass and energy flux terms to the RCS that 

appeared as user supplied or code calculated boundary 

conditions in the RELAP5 model.  The surrogate 
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accurately predicted the TH behavior of the core for a 

variety of HPSI system performance and containment 

conditions when compared with RELAP5 simulations.  

The surrogate was applied in a DET application 

replacing computational expensive RELAP5 

simulations allowing rigorous evaluation of the DET by 

MC methods and benchmarking of more efficient 

sampling methods. 

   The concept of surrogates and application to time-

dependent simulations of NPP TH behavior has been 

demonstrated.  However, we recognize that the 

recirculation phase transient studied is well defined for 

the performance of one system, the HPSI system, and 

indirectly by containment systems.  For more complex 

transients involving several systems or more sources or 

energy and mass flux such as heat removal through the 

SGs, more complex surrogates that can predict coupled 

TH behavior such as temperature, pressure, and loop 

mass flows will need to be developed, requiring a more 

systematic approach to identifying and defining input 

parameters for surrogate construction.  Recent work has 

demonstrated fractional scaling analysis at the system 

level providing a framework identifying key TH 

relationships that drive the rates of change of system 

variables in NPPs [6].  Such methods may be useful for 

scaling data from TH code simulations during surrogate 

training allowing the flexibility of surrogates to learn 

more fundamental NPP behavior rather than system 

response to specific system configurations and initiating 

events. 
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