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1. Introduction

Code surrogates are mathematical models that
approximate the input/output relationship of more
complex computer code simulations. Surrogates, also
called response surfaces, metamodels, and code
emulators, are fast running making them attractive to
applications such as design optimization and
uncertainty quantification where many simulations need
to be performed and direct use of the computer code is
computationally prohibitive. In the nuclear safety field,
response surfaces were used in the first demonstration
of the code scaling, applicability, and uncertainty
(CSAU) methodology to quantify the uncertainty of the
peak clad temperature (PCT) during a large-break loss-
of-coolant accident (LBLOCA). Surrogates could have
applications in other nuclear safety areas such as
dynamic probabilistic safety assessment (PSA).
Dynamic PSA attempts to couple the probabilistic
nature of failure events, component transitions, and
human reliability to deterministic calculations of time-
dependent nuclear power plant (NPP) responses usually

through the use of thermal-hydraulic (TH) system codes.

The overall mathematical complexity of the dynamic
PSA architectures with many embedded computational
expensive TH code calculations with large input/output
data streams have limited realistic studies of NPPs.

This paper presents a time-dependent surrogate
model for the recirculation phase of a hot leg LBLOCA
in the OPR-1000. The surrogate model is developed
through the ACE algorithm [1], a powerful
nonparametric  regression  technique, trained on
RELAPS simulations of the LBLOCA. Benchmarking
of the surrogate is presented and an application to a
simplified dynamic event tree (DET).

2. Modeling Recirculation Phase of LBLOCA
2.1. OPR-1000 systems description

An LBLOCA is postulated to occur in the hot leg of
the OPR-1000, a two-loop pressurized water reactor
(PWR) with a rated power of 2815 MWt. The reactor
coolant system (RCS) consists of the core, 4 cold legs, 2
hot legs, 2 steam generators, and pressurizer. The
safety injection (SI) systems replenish the RCS
inventory following a LOCA and ensure long term
cooling of the core. The high pressure safety injection
(HPSI) system, low pressure safety injection (LPSI)
system, and safety injection tanks (SIT) interface with
the RCS at the S| headers on the cold leg piping. The
HPSI and LPSI systems each have two pumps with

design flows of 815 gpm and 4200 gpm, respectively.
The containment spray (CS) system suppresses
containment pressure and temperature and removes heat
to the ultimate heat sink. The containment spray (CS)
system consists of two pumps with design flows of
3890 gpm, shutdown cooling heat exchangers, and
spray headers.

2.2. TH behavior during LBLOCA

Following the initial blowdown and reflood, the
LBLOCA can be divided into 3 major phases for the
long term cooling of the core: injection phase,
recirculation phase, and simultaneous hot and cold leg
injection. During the injection phase, all HPSI, LPSI,
and CS pumps in their initial configuration draw suction
from the refueling water storage tank (RWST). When
the RWST inventory is depleted, the recirculation
actuation signal (RAS) is sent and the LPSI pumps are
automatically tripped. The HPSI and CS pump suction
are automatically switched to the containment sumps
where spilled water from the break and condensed
steam and CS water collects. Operators must manually
isolate the RWST and verify that sufficient sump
conditions exist for recirculation. The sump water
temperature can be much higher than the RWST water
temperature and is a function of the total energy
released from the RCS through the break flow and the
operation of the CS system integrated over the transient
time. At some time after recirculation begins, operators
must manually realign some of the HPSI pump
discharge to the hot legs for simultaneous hot and cold
leg injection to ensure a sufficient flushing flow exists
across the core to prevent boron precipitation.

The combined flow rate of the HPSI and LPSI pumps
injecting large volumes of cold water from RWST to
the RCS results in the single-phase flow and subcooling
of the core during the injection phase. The RAS can be
received as early as 20 minutes after a LBLOCA occurs
when the decay power in the core is relatively high.
The combination of high decay power, reduced Sl flow
rate after trip of LPSI pumps, and SI water from the
sump that is closer to saturation conditions cause a
rapid transition into two-phase flow in the top of the
core increasing core boil-off and dropping the water
level at the onset of recirculation. Subcooling of the
core is gradually restored through decreasing decay
power with time and continued recirculation through
the HPSI and CS systems. This study investigates the
time-dependent behavior of the core subcooling subject
to uncertainties of the containment sump conditions and
HPSI pump performance degradations. A surrogate
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model is constructed to predict the fraction of core
subcooling.

Additionally, during the injection phase and early on
in recirculation, reflux heat transfer conditions can exist
in the steam generator (SG) of the intact loop. Because
the RCS rapidly depressurizes during the blowdown
and most of the RCS inventory is replaced with cold SI
water, the primary side pressure and temperature can be
lower than the large inventory of water in the shell side
of the SG. Reflux heat transfer superheats residual
steam and water on the tube side which can circulate
through the cold leg piping mixing with SI water.
Although the mass flow rates in the intact loop are
small, the mixing can raise the enthalpy of the SI water
reaching the core.

2.3. RELAP5 model

A RELAP5/MOD3.3 model of the Ulchin Units 3&4
NPP (UCN3&4), a reference OPR-1000, was used to
simulate the LBLOCA and recirculation phase. The
model is comprised of 250 hydrodynamic volumes, 280
hydrodynamic junctions and 259 heat structure
representing all of the major components of the RCS.
The RCS nodalization is shown in Fig. 1.

The HPSI and LPSI systems are modeled as time-
dependent volumes and junctions representing user
defined time and system state dependent boundary
conditions to the model. The pumps are modeled as
junctions actuated by trip logic. Flow rate curves for
the pumps are input as table lookup functions of
pressure in the discharge legs of the cold leg piping. A
degradation factor is applied to the HPSI pump curve to
adjust flow rates. Time-dependent  volumes
representing the SI water source from the RWST or
containment sumps define the temperature water
flowing through the junctions.

RELAPS5 is usually not used for containment analysis
so the containment volumes and CS system are not
explicitly modeled. The hot leg break is connected to
time-dependent volumes representing the containment
compartments providing sinks for water and steam that
exit the break. A time-dependent pressure curve
characteristic of a containment response to LBLOCA is
input for the containment volumes.
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Fig. 1. Nodalization for RELAP5 UCN3&4 model.

2.3. RELAPS simulations

The RELAP5 UCN3&4 model was used to simulate
13 sequences of the recirculation phase of the hot leg
LBLOCA. First, the injection phase of the LBLOCA
was simulated assuming all HPSI, LPSI, and CS pumps
operate at design capacities and the RAS time was
calculated to occur at 1680 s assuming a 7.5% level
setpoint for the RWST. The simulation was restarted
for each of the 13 recirculation phase sequences with
the assumed flow rate of the HPSI pumps and sump
water temperature listed in Table I. HPSI flow rates
were varied from 100% to 25% to represent a spectrum
of possible degraded HPSI operation including 1 failed
pump and decreased net positive suction head (NPSH).
The sump water temperatures were varied from 300 K,
the temperature of the RWST water during the injection
phase, and 370 K which is close to saturation
temperature of the RCS during recirculation. For
sequences 12 and 13, the sump water temperature
followed the ramp curve depicted in Fig. 2 where the
temperature is assumed to linearly increase to saturation
from the RAS time to 10,000 s and linearly decrease to
325 K at 20,000 s.

Table I. Design matrix of HPSI flow rate and
containment sump temperature for RELAP5
recirculation phase simulations

Sump
Seq. # | HPSI Flow Rate Temperature (K)
1 100% 300
5 100% 325
3 100% 350
7 755 300
5 75% 325
6 75% 350
7 75% 370
8 50% 300
9 50% 325
10 50% 350
11 25% 300
12 100% Ramp
13 50% Ramp
380
Q 370 |
o ok |
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Fig. 2. Containment sump temperature curve for ramp
cases in design matrix.
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The results from the RELAP5 simulations of the
recirculation phase are shown in Fig. 3. The plots of
the subcooled water level V, the fraction of the core
volume where single-phase flow and subcooling TH
conditions exist, are normalized to the height of the top
of the active fuel in the core. Figure 3 shows the rapid
transition to two-phase flow in the core following RAS
and the trip of the LPSI pumps and the gradual recovery
of the subcooled water level with time. The transient
behavior appears to be sensitive to both the HPSI flow
rate and sump water temperature.
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Fig. 3. Subcooled water level during recirculation.

3. Surrogate Model for Recirculation Phase

The computation time for each RELAP5 simulation
presented in previous section is on the order of hours.
In the context of PSA, there are several systems and
associated subsystems and components whose
successful  operation, failures, and degradations
determine the HPSI flow rate and sump water
temperature that are the time-dependent boundary
conditions to the UCN3&4 model. A dynamic PSA
study may require many simulations to resolve the plant
behavior subject to the performance of these

components and systems. In this section, we construct
a surrogate model capable of predicting the subcooled
water level in the core during the recirculation phase.
The surrogate structure is proposed as a discrete time
dynamic model and the functional form of the model is
learned by performing regression on the RELAP5
simulations through the ACE algorithm.

3.1. Alternating conditional expectation algorithm

The ACE algorithm is a generalized nonparametric
method that yields an optimal relationship between the
dependent variable y and multiple independent variables
{x,i=1,...,p} by obtaining one-dimensional
transformations 6(y) and ¢;(x;) of each variable
through an iterative procedure that maximizes the
statistical correlation between 6(y) and 3._, ¢;(x;). A
full derivation and algorithmic details can be found in
Ref. [1]. The ACE algorithm procedure applied to a
multivariate data set (X,y)={xi.y;, i=1,...p, J=1,...,n} is
given in Table Il

Table 1. ACE algorithm procedure
1) Initialize A(y) =y/|ly|| and all ¢i(x;)) =0

Calculate ¢;(x;) conditioned on x;. Sort #(y) and
#1(x) in ascending order of x; and evaluate for i =
1,..p:
¢i(xi;) = E[0(y) — X0, 1 (x) |x; = ;5]

= S[0() — 20 b1 () 1% ]
Iterate through all i until squared error fails to
decrease:

e2(0, 1, bp) = % alo(yy) -2, qbl-(xi,-)]z

2

~

All 9(y) are held constant and ¢;(x;) is updated
after each iteration.

Calculate 6(y) conditioned ony. Sort ¢;(x;) in
ascending order of y and evaluate:

3)
9( ) — E[3E | ¢:iply=y)] _ S[EP, ol
Yi E[ZD_, d:Cly=yjlll ~ IIS[ZE, d:Ceadlyjll
a) Alternate between steps 2 and 3 until

€%(6, ¢4, ..., ¢,) does not change

The key feature of the ACE algorithm is the localized
smoothing operation S[.] in steps 2 and 3. The
smoothing operation is the conditional expectation from
which the name of the ACE algorithm is derived. The
smoothing operation is

S[Zklzj] = Z{;I;I_M Wiz, , 1)

a weighted average about a window of data points
around point z. Each data smooth is a form of locally
weighted regression. The weights W, and window
width 2M are determined by the type of smoothing
operation which must be chosen by the user. This study
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used the ‘acepack’ package available in the R statistical
program using the supersmoother [2], which adaptively
varies the window width due to the local data
characteristics. The ACE algorithm yields the nonlinear
relationship through the transformations

0) =X, di(x)+ v. 2

The final nonlinear mapping from the inputs to the
output variable involves taking the inverse transform

y =012, ¢i(x)) . (3)

The model uncertainty v of the ACE surrogate can
be estimated by calculating the weighted variance of 9(y)
using the converged transformed data points 6(y;) from
the last iteration of the ACE algorithm [3]. The
weighted variance using Eq. (1) is

yIM Wk(Zk—S[Zk|z-])2

2 _ “k=j-M J

S [Zklzj] - 2M-1 o j+M .
2M z:k=j—M

(4)

Wi
3.2. ACE surrogate for recirculation phase

In typical applications, surrogates are usually static
input-output nonlinear mappings that predict limiting
values of the output variable, such as PCT, without
computing a complete time-dependent history of the
system behavior. However, in dynamic PSA
applications, the system state evolution under different
operation conditions coupled to interactions with
component transitions and human operator actions that
can lead to safe or unsafe plant states is the desired
result. Obtaining the system state evolution trajectories
requires that complete simulations be performed. A
dynamic code surrogate that can predict time-dependent
system behavior will significantly reduce the
computational burden compared to direct calculations
with a TH code.

We propose the surrogate to take the general
structure of a discrete time dynamic model

x(tk+1) = F[x(tk)'u(tk)iv(tk)iAt] ’ (5)

where system state x is advanced over discrete time

steps { At = t.¢-t} to predict the future state x(tc.1)
from the previous state estimate x(t) and the input
parameter vector u subject to model noise or
uncertainty v. F[.] is possibly a nonlinear function.

The system state is recursively calculated from t, — ty

by setting x(t«+1) — X(t) after each evaluation of Eq. (5).
The discrete time dynamic model implicitly treats the
absolute transient time t, as input parameters, which
may be time-dependent functions.

For the recirculation phase surrogate, the system
state variable is the subcooled water level V(t). The
input parameters are sources of mass and energy flux
into the RCS that drive the TH behavior. Four input

variables are decay power qq(t), subcooling enthalpy
flow rate of the HPSI system hyw,, mass flow rate of
HPSI system wj, and ratio of subcooling enthalpy flow
rate to decay power hyw,/ qq¢(t) which is a dimensionless
number similar to the Stanton number. Equation (5)
becomes

hpw.
Vk+1 = F [Vkl qd’ hpr, Wp,%, Uk,At]. (6)

The purpose of the ACE algorithm is to the learn the
functional form of F[.] from data of the 13 RELAP5
simulations. The decay power curve is available from
the RELAPS output and is the same for all sequences.
The subcooling enthalpy flow rate of the HPSI system
is defined as hpwy = (Nsat - Nsump)W, Where hgy is the
saturation enthalpy of the fluid in the RCS and hgp, is
the enthalpy of the water in the containment sumps
which is directly determined by the assumed
temperature of the sump water during recirculation.
The subcooling enthalpy flow rate represents the
amount energy per unit time the liquid SI water can
absorb without reaching saturation and generating
steam. The mass flow rate of the HPSI system is also
directly determined by the assumed flow rate used for
each sequence.

For each sequence, V.1 and V, were extracted at At =

20 s time steps from the RELAP5 output observing V
does not change by more than a few percent in the data
for this time scale. Combined with the decay power
data and assumed HPSI flow rates and sump
temperatures, the 13 RELAP5 sequences provide 15916
data points representing realizations of Eq. (5). Figure
4 shows the scatterplots of V,.; as a function of each
input variable. Visual examination of the scatterplots
reveal very little information about the functional form
of Eq. (6) except the strong linear correlation between
Vo1 and V, which is expected from the recursive
relationship of the discrete time dynamic model
structure.

Applying the ACE algorithm to the data sets yields
the transformations shown in Fig. 5. The
transformations provide smooth one-dimensional
function forms for each variable and Eq. (6) is
explicitly written as

O(Vne1) = ¢1(qq) + ¢2(hpr) + ¢3(Wp) +
¢s (222) + (V) + v

dad

Vo1 = 07 (s (V) + Y1 di(x)+v). (7

One strength of the ACE algorithm as a nonparametric
regression technique is that no a priori assumptions had
to be made about the functional forms of the
transformations in Fig. (5). The transformations were
automatically learned by the ACE algorithm from the
noisy RELAPS data shown in Fig. (4).

Table 11 lists the ranges of the independent variable
transformations and comparison to the range of 8(V,.1)
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in the transform space as a measure of sensitivity or the
importance of each variable. The range of the recursive
component ¢s(V,) of the surrogate is equal to 73% of
6(Vyn+1) followed by subcooling enthalpy flow ¢,(h,w,)
and decay power ¢;(qq) at 33% and 23%, respectively.
The consequence of the discrete time dynamic system
model structure is the direct correlation between V,.;
and V, evident through the transformations ¢s(V,) and
6(Vy+1) Which are nearly linear. The time step limits the
deviation of V,,; from V, within a few percent so V,
must be the most important parameter that determines
V... The other variables determine whether the water
level increases or decreases from V,,.
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Fig. 4. Scatterplots of subcooled water level V vs. input
variables for ACE surrogate.

Table I11. Range and sensitivity of ACE transformations
min max A¢ % of 0
0 -1.91 2.08 3.99 100
¢, | -0.39 0.54 0.93 23
¢, | -0.74 0.58 1.32 33
¢; | -0.06 0.04 0.10 3
¢, | -0.11 0.42 0.53 13
¢s | -1.43 1.47 2.90 73
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Fig. 5. ACE transformations of smoothed RELAP5
data for subcooled water level surrogate.
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Figure 6 shows the estimated variance of 6(Vy.1)
calculated through Eq. (4). When the surrogate is used
to predict Vo, with Eq. (7), v represented by the
variance of 6(V,.1) must be propagated through the
inverse transform 67(.) to obtain an uncertainty for V...
Assuming the errors are normally distributed, a standard
deviation of +/-0.05 is a good approximation of the
uncertainty of V.., over the range of V.;.

y: Vn+1
Fig. 6. Variance estimate of 6(Vy.1).

3.3. Benchmarking surrogate vs. RELAP5 results

To test the predictive accuracy of the surrogate, the
RELAP5 sequences in the training set are simulated
with the ACE surrogate. RELAPS5 sequences and the
ACE predictions are compared in Fig. 7. The standard
deviations presented with the ACE results represent the
uncertainty of the ACE predictions. Two additional
RELAPS5 simulations were performed, Sequence 14 and
Sequence 15, comprising a test set for cross-validation.
Sequence 14 assumed 100% HPSI flow rate and a
constant sump temperature of 335 K. Sequence 15
assumed 100% HPSI flow rate and a time-dependent
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sump temperature curve shown in Fig. 8 obtained from
the UCN3&4 FSAR [4].
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The surrogate simulations were initiated at a transient
time of 1680 s, the time of the RAS, and subcooled
water level Vo = 1. Using 20 s time steps, Eq. (7) was
evaluated to obtain V,.;. The ACE model uncertainty v
discussed in Section 3 introduces uncertainty into each
prediction V,.1. From the recursive relationship V., —
V,, the state estimate V, becomes an uncertain input
parameter to the surrogate, first undergoing the
nonlinear  transformation ¢s(.) and subsequent
transformation @'(.) after being combined with the
model uncertainty. Therefore, the uncertainty of V., is
a function of two random variables, v and V,
undergoing nontrivial nonlinear transformations. The
unscented transformation (UT) [3,5] is employed as an
efficient way to estimate the variance of V,.;. The UT
deterministically selects samples from the distributions
of v and V, and estimates the variance from the output
statistics of the surrogate evaluated at these points.

The surrogate appears to reproduce the RELAPS
results with reasonably accuracy for all of the sequences
including the cross-validation cases. The surrogate
trajectories are smooth curves compared to the noisy
RELAPS data. Portions of the RCS remain voided and
the localized TH conditions in the core where the
single-phase flow is transitioning to two-phase flow
display high frequency fluctuations due to the low
pressure and low flow rate conditions during
recirculation. The detailed RELAP5 UCN3&4 model
can predict the oscillatory conditions evident in the
water level data, whereas the surrogate was derived
from a few simple variables representing the mass and
energy flux boundary conditions of the RCS. The
surrogate was intended to predict the macroscopic
behavior of the system and was capable of learning this
behavior from noisy data, a clear benefit of the ACE
algorithm. The surrogate did not include any input
variables that describe the heat transfer and
condensation or superheating of steam in the steam
generator of the intact loop.
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4. Dynamic Event Tree Application

In this section, the applicability of surrogates to
dynamic PSA is demonstrated by studying a simplified
DET of the recirculation phase. The transition from the
injection phase to the recirculation phase at RAS time
involves significant changes in the HPSI system
configuration and uncertain conditions within the
containment sumps. The DET specifically considers
degradations to the HPSI system related to Generic
Safety Issue 191, debris accumulation at the

containment sump screens resulting in the loss of NPSH,

and operator action time to diagnose and repair a failed
HPSI pump. The fast computation time of the surrogate
model allows the DET to be simulated by a direct
Monte Carlo (MC) method. The MC solution serves as
a benchmark to validate a newly proposed method using
the UT to generate degraded component states and
branch point times in the DET.

The initiating event for the DET is failure of HPSI
pump B at the RAS time. HPSI pump A is assumed to
have been successfully realigned to a containment sump
and operates in recirculation mode. To account for
possible degraded sump conditions, the available NPSH

to pump A is assumed to be uniformly distributed U[7 ft,

20 ft]. The flow rate of pump A is obtained from the
NPSH curve for OPR-1000 HPSI pumps from [4]. The
time for the operator diagnosis of the failed state of
HPSI pump B and repairs is assumed to be normally
distributed N[4500 s, 1800 s]. Once repaired and
operating, the available NPSH for pump B is uniformly
distributed U[7 ft, 20 ft]. The sump water temperature
used to calculate h, is assumed to be normally
distributed N[345 K, 10 K]. These four variables
reflecting an uncertain repair time, degraded sump
conditions, and uncertain containment conditions are
the input parameters to the DET.

The DET is evaluated using the MC method with
10,000 simulations by randomly sampling the
distributions of the 4 uncertain variables. The surrogate
is used to calculate the subcooled water level in the core
for each sequence with Wy = Wyympa fOr t < trepair and w,
= Wpumpa + Woumps TOr t > trepair.  Each simulation is
terminated at 12,000 s. Figure 9 shows 100 selected
simulations. Each trajectory V(t) corresponds to a
unique branch of the DET. The water level can vary by
over 50% of the active core height during most of the
transient, suggesting that the plant behavior can be
highly variable even with 1 of 2 HPSI pumps always
functioning within operational limits.

The DET is evaluated a second time using the UT
method requiring only 9 simulations. Figure 10 shows
the 9 UT simulations from which the mean and variance
of the water level trajectories subject to the uncertainty
of the 4 variables are estimated. The mean and variance
are also calculated from the MC simulations, and Fig.
11 shows a comparison of the UT estimate to the MC
benchmark. The UT and MC results are in close
agreement.  Clearly, performing 10,000 RELAP5
simulations is unreasonable so the surrogate is a useful

tool to facilitate direct MC simulation of DET and
benchmark more efficient sampling methods such as the
UT that would enable direct use of TH codes in
dynamic PSA applications.
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Fig. 11. Monte Carlo vs. UT estimates of mean and
variance for the repair of HPSI pump DET.

5. Discussion and Future Work

A time-dependent surrogate model to predict core
subcooling during the recirculation phase of a hot leg
LBLOCA in the OPR-1000 has been developed. The
surrogate assumed the structure of a general discrete
time dynamic model and learned the nonlinear
functional form by performing nonparametric
regression on RELAP5 simulations with the ACE
algorithm.  The surrogate model input parameters
represent mass and energy flux terms to the RCS that
appeared as user supplied or code calculated boundary
conditions in the RELAP5 model. The surrogate
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accurately predicted the TH behavior of the core for a
variety of HPSI system performance and containment
conditions when compared with RELAP5 simulations.
The surrogate was applied in a DET application
replacing computational expensive RELAP5S
simulations allowing rigorous evaluation of the DET by
MC methods and benchmarking of more efficient
sampling methods.

The concept of surrogates and application to time-
dependent simulations of NPP TH behavior has been
demonstrated. However, we recognize that the
recirculation phase transient studied is well defined for
the performance of one system, the HPSI system, and
indirectly by containment systems. For more complex
transients involving several systems or more sources or
energy and mass flux such as heat removal through the
SGs, more complex surrogates that can predict coupled
TH behavior such as temperature, pressure, and loop
mass flows will need to be developed, requiring a more
systematic approach to identifying and defining input
parameters for surrogate construction. Recent work has
demonstrated fractional scaling analysis at the system
level providing a framework identifying key TH
relationships that drive the rates of change of system
variables in NPPs [6]. Such methods may be useful for
scaling data from TH code simulations during surrogate
training allowing the flexibility of surrogates to learn
more fundamental NPP behavior rather than system
response to specific system configurations and initiating
events.
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