
Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

A Translator Verification Technique for FPGA Software Development

 in Nuclear Power Plants

Jaeyeob Kim

 a
, Eui-Sub Kim

 a
, Junbeom Yoo

 a

a
Division of Computer Science and Engineering, Konkuk University

1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
*
Corresponding author: radic2510@gmail.com

1. Introduction

The PLC (Programmable Logic Controller) is an

industry computer widely used to implement the safety-

critical system such as RPS (Reactor Protection System)

in NPP (Nuclear Power Plants). Increasing complexity

of newly developed systems and maintenance cost,

however, are now demanding more powerful and cost-

effective implementation such as FPGAs (Filed-

Programmable Gate Array) [1]. Although the FPGAs

give a high performance than PLCs, the platform change

from PLC to FPGA impose all PLC software engineers

give up their experience, knowledge and practices

accumulated over decades, and start a new FPGA-based

hardware development from scratch.

We have researched to fine the solution to this

problem reducing the risk and preserving the experience

and knowledge [2, 3, 4]. One solution is to use the

‘FBDtoVerilog’ translator, which translates the FBD

programs into behavior-preserving Verilog programs. In

general, the PLCs are usually designed with an FBD,

while the FPGAs are described with a HDL (Hardware

Description Language) such as Verilog or VHDL. Once

PLC designer designed the FBD programs, the

‘FBDtoVerilog’ translates the FBD into Verilog,

mechanically. The designers, therefore, need not

consider the rest of FPGA development process (e.g.,

Synthesis and Place&Routing) and can preserve the

accumulated experience and knowledge.

Even if we assure that the translation from FBD to

Verilog is correct, it must be verified rigorously and

thoroughly since it is used in nuclear power plants,

which is one of the most safety critical systems. While

the designer develops the FPGA software with the FBD

program translated by the translator, there are other

translation tools such as synthesis tool and

place&routing tool. This paper also focuses to verify

them rigorously and thoroughly.

There are several verification techniques [5] for

correctness of translator, but they are hard to apply

because of the outrageous cost and performance time.

Instead, this paper tries to use an indirect verification

technique for demonstrating the correctness of translator

using the co-simulation technique. We intend to prove

only against specific inputs which are under

development for a target I&C system, not against all

possible input cases. If the proposed technique succeeds,

then we can assure the translator worked correctly at

least for the inputted programs.

We had developed the supporting tools for co-

simulation such as ‘Scenario Generator,’ ‘FBD

Simulator,’ ‘FBD-Verilog Comparator’ and so on. We,

however, should implement more than three

independent tools, individually. The independent

execution of them can cause several disadvantages such

as human errors generated by mistake and time

consuming for change the tools. We thus developed the

integrated tool to support the co-simulation. It contains

the previous developed tools such as ‘Scenario

Generator,’ ‘FBD Simulator’ and ‘FBD-Verilog

Comparator,’ and implements the independent tools,

internally and automatically. Thus, the designer can

largely focus on the development of software.

This paper is organized as follows. Section 2

introduces FBD, Verilog HDL, EDIF, ‘Scenario

Generator’, ‘FBD Simulator’ and co-simulation. Section

3 explains the developed integrated tool and process in

details. Section 4 shows the efficiency of the developed

tool with a case study using the Korea Nuclear RPS

logic. Section 5 concludes the paper and provides

remarks on future research extension.

2. Related work

2.1 FBD (Function Block Diagram)

FBD (Function Block Diagram) is one of five

standard PLC programming languages defined in the

IEC 61131-3 standard [6]. It is a graphical language for

programmable logic controller design that can describe

the function between input variables and output

variables. A function is described as a set of elementary

blocks. Input and output variables are connected to

blocks by connection lines. FBD consists of an arbitrary

number of function blocks connected together with links

or wires similar to that of a circuit diagram. FBD has

been widely used for developing software controllers of

plants and machines because of its graphical notations

and usefulness in implementing data flow based

applications.

2.2 Verilog HDL

Verilog [7] is one of the most common HDLs used by

IC (Integrated Circuit) designers. Designs modeled in

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

Verilog are technology independent, easy to develop

and debug, and considered more readable than

schematics. For this reason, Verilog is being

increasingly used to specify software logic for process

control system. Also, a variety of EDA (Electronic

Design Automation) tools support the process of gate-

level synthesis. Therefore, the development using

Verilog has advantage that regardless of the

manufacturing process, such as a semiconductor chip or

a FPGA device, to develop and to design the circuit in

concentration.

2.3 EDIF (Electronic Design Interchange Format)

EDIF [8] is a vendor-neutral format in which to store

Electronic netlists and schematics. It was one of the first

attempts to establish a neutral data exchange format for

the EDA industry. The goal was to establish a common

format from which the proprietary formats of the EDA

systems could be derived. When customers needed to

transfer data from one system to another, it was

necessary to write translators from one format to other.

2.4 FBD Simulator

The ‘FBD Simulator’ is simulator for FBD. It has

been developed in order to verify the correctness of the

‘FBDtoVerilog’. After FBD is input, it automatically

classifies the POU (Program of Unit) in the FBD. And it

presents input, output, and local list. It is available to

generate input values and simulate at the same time

manually on cycle. Also it presents graphs of changes of

value simultaneously.

2.5 Scenario Generator

The ‘Scenario Generator’ [9] is a tool that

automatically generates a scenario. FBD can be only the

input file for this tool. The ‘Scenario Generator’ can

generate a scenario that reflects the features of the

domain such as range of values, and to automatically

generate an infinite number of scenarios. Generated

scenario can be used interchangeably in the simulator

because scenario has the only input value used in

simulation.

2.6 Co-Simulation

Co-simulation is indirect verification technique of

translator. It simulates programs with same scenario and

compares results of simulation for confirming

correctness. Comparison process simply compares

results that programs output values which are occurred

with the same elapsed time. On the other hand, it is

called Behavior equivalence checking. Confirmation of

correctness with co-simulation can make to enhance the

reliability of the program so as to ensure that program

which is input and translated program, at least, perform

the same function.

3. The Integrated Tool for Demonstrating the

Correctness of Translator

The whole process for demonstrating the correctness

of translators with co-simulation is depicted in Fig 1.

Before performing the co-simulation, each program (i.e.,

FBD, Verilog and EDIF) should be prepared with

‘FBDtoVerilog’ and synthesis tool. First, it reads three

programs such as a FBD, a Verilog and an EDIF. Next,

it automatically generates same scenarios for the FBD,

the Verilog and the EDIF programs, respectively.

Finally, it also automatically simulates the FBD, the

Verilog and the EDIF programs, and compares each

simulation result for checking whether each simulation

results are equivalent or not. If all simulation outputs are

equivalent, it produces the ‘True,’ otherwise it produces

the counter example with graphical chart. The graphical

chart makes for designer to know how two programs

reach to the different state through tracing the sequence

of variables. We developed the integrated tool to

support the proposed technique.

Fig. 1. The overall process for co-simulation

3.1 The Input programs of the integrated tool

This section explains each input programs for the

integrated tool, which receive the three programs (i.e.,

FBD, Verilog and EDIF). Fig. 2 shows the input part in

integrated tool, which consists of three parts for FBD,

Verilog and EDIF. The FBD programs should follow

the de facto standard of PLCopen TC6 [10], not permit

a vendor-specific FBD format since the imported two

tools, ‘FBD Simulator’ and ‘Scenario Generator,’ only

support the PLCopen format. The Verilog programs

should be translated by the ‘FBDtoVerilog’ translator.

Once the designers make the FBD programs, they can

naturally obtain the Verilog programs since the

‘FBDtoVerilog’ translator automatically translates the

FBD programs into Verilog programs. After both co-

simulations of FBD and Verilog programs were finished,

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

we can assure the translator works correctly at least for

the FBD programs when simulation results are

equivalent. The EDIF programs should be synthesized

by the synthesis tool (e.g., ‘Synopsis Synplify Pro’ [11]).

We also aim to verify the 3
rd

-party synthesis tools. If

also the simulation results are equivalent, then we can

assure the synthesis tool works correctly at least for the

Verilog programs.

Fig. 2. The input part of integrated tool

3.2 The Scenario Generation

This section explains the scenario generation process.

Fig. 3 show the scenario generation part in integrated

tool, which consists of three parts for FBD model input,

pou selection and setting table for constraints of

scenarios. It is important to assure the scenarios we use

are sufficient for demonstrating the behavioral

equivalence.

Fig. 3. The scenario generation part of integrated tool

We therefore use the ‘Scenario Generator [9],’ which

we developed for generating various and more practical

scenarios for executing FBD and Verilog programs

simultaneously. It can automatically generate a number

of scenarios to cover as many as possible cases. It also

takes several constraints on input values, e.g., initial

values, rate of change and maximum/minimum values to

reflect the domain features. It then randomly generates a

number of scenarios within predefined constraints on

input values. We are now planning to extend it with

more elaborate and systematic generation strategy,

based on theories such as structural coverage criteria for

co-simulation.

3.3 The Simulation & Comparison

This section explains the simulation and comparison

process in integrated tool. Fig. 4 shows the screenshot

of simulation and comparison result. The integrated tool

performs the three simulations (i.e., FBD, Verilog and

EDIF) with two simulators (i.e. ‘FBD Simulator’ and

‘ModelSim’ [12]). Also, it performs with the two

comparisons between FBD with Verilog and Verilog

with EDIF using two comparators (i.e., ‘FBD-Verilog

Comparator’ and ‘Verilog-EDIF Comparator’). The

integrated tool, however, performs the two processes

internally and automatically. Thus, it is not necessary

for designers to consider the simulation and comparison

processes. It can reduce the human errors generated

during performing its processes and the performance

time.

Internally, the FBD programs are simulated with

‘FBD Simulator,’ which saves the simulation result

into .txt file. On the other hands, the Verilog and EDIF

programs are simulated with ‘ModelSim,’ which

originally generates the simulation result into wave form,

but we convert to the .lst file (.txt file) from the wave

form with command of ‘ModelSim.’ We can now easily

compare each simulation results of FBD, Verilog and

EDIF programs because we obtained each simulation

result with .txt file. If each co-simulation results are

equivalent, then we can assure that the translation from

FBD into Verilog and the synthesis from Verilog into

EDIF worked correctly. If each co-simulation results are

not equivalent, on the other hand, then we can’t assure

that the translation or the synthesis worked correctly.

And then, tool produces the counter example with

graphical chart.

Fig. 4. The simulation and comparison part of integrated tool

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

4. Case Study

We tried to apply to an integrated tool using the FIX-

RISING and FIX-FALLING of KNIC RPS BP. First,

we translated FBD programs, FIX-RISING and FIX-

FALLING, into Verilog programs using the

‘FBDtoVerilog’ and translated Verilog programs into

EDIF using the ‘Synplify Pro.’ Then, we inputted

programs to the integrated tool. In the ‘Scenario

Generator’ part, we generated 100 scenarios for each

program. Table I described the initial values of each

scenario. Then, an integrated tool simulated programs

using scenarios and compared simulation results.

The integrated tool shows the result of simulation of

all inputted program (e.g., FBD, Verilog and EDIF)

were equivalent. As a result, we can assure that the

‘FBDtoVerilog’ and ‘Synplify Pro’ worked correctly at

least for the inputted programs. Also, comparison with

the case of not using an integrated tool indicates that the

case of using integrated tool more than 10 times faster.

Thus, it is possible to save time for verification when

using an integrated tool.

Table I: The Co-Simulation results

 FIX-RISING FIX-FALLING Total

Scenarios 100 100 200

Initial

Values

27,000-28,000

(stepwise: 100)

12,000-13,000

(stepwise: 100)
All

Correct
Rate of

Change

10-100

(stepwise: 10)

10-100

(stepwise: 10)

Cycles 100 100

5. Conclusion

We developed the integrated tool in order to

automatically perform the co-simulation. It integrates

the several developed tool such as ‘Scenario Generator,’

‘FBD Simulator’ and ‘FBD-Verilog Comparator’ and

executes them internally and automatically. It has an

advantage of reducing the time for verification and

preventing human errors. We intend to demonstrate the

correctness of translator such as ‘FBDtoVerilog’ and the

commercial synthesis tools. As a result, we

demonstrated them indirectly with case study that the

‘FBDtoVerilog’ and ‘Synplify Pro’ worked correctly at

least for the inputted programs.

We are planning to extend the integrated tool to

perform a JEDEC for verifying place&routing tool,

which translates an EDIF into a JEDEC. We are also

planning to elaborate the scenarios on the basis of

adequate coverage criteria such as structural coverage

or FBD testing coverage [13] in order to increase the

confidence of verification.

Acknowledgements

This research was partially supported by a grant from

the Korea Ministry of Strategy, under the development

of the integrated framework of I&C conformity

assessment, sustainable monitoring, and emergency

response for nuclear facilities, and also partially

supported by a grant from the Korea Atomic Energy

Research Institute, the development of the core software

technologies of the integrated development environment

for FPGA-based controllers.

REFERENCES

[1] J. Yoo, J.-H. Lee and J.-S. Lee, A Research on Seamless

Platform Change of Reactor Protection System from PLC to

FPGA, Nuclear Engineering and Technology, Vol.45, No.4,

pp.477-488, 2013.

[2] D.-A. Lee, E.-S. Kim, J. Yoo, J.-S. Lee, and J. G. Choi,

FBDtoVerilog 2.0: An automatic translation of FBD into

Verilog to develop FPGA, International Conference on

Information Science & Application (ICISA), pp. 447-450,

2014.

[3] J.-Y. Kim, D.-A. Lee, Y.-J. Seo, J. Yoo, NuSCRtoFBD

4.0: Automatic Generation of FBD Program for FPGA

development from NuSCR Formal Specification, Korea

Computer Congress (KCC), pp. 1986-1988, 2014.

[4] J. Yoo, E.-S. Kim, D.-A. Lee and J.-G. Choi, An

Integrated Software Development Framework for PLC &

FPGA based Digital I&Cs, International Symposium on

Future I&C for Nuclear Power Plants/ International

Symposium on Symbiotic Nuclear Power System

(ISOFIC/ISSNP), 2014.

[5] E.-S. Kim, D.-A. Lee, J. Yoo, A Survey of Verification

Techniques for Translator, Code generator and Compiler,

Korea Conference on Software Engineering (KCSE), Vol.15,

No1, pp. 43-51, 2013.

[6] IEC, IEC 61131-3, International standard for

Programmable controllers – part 3: Programming languages,

2013.

[7] IEEE Computer Society, IEEE Std 1364-2005, IEEE

Standard Verilog Hardware Description Language, 2006.

[8] Electronic Industries Association, Electronic Design

Interchange Format Version 2.0.0 ANSI/EIA-548-1988, 1988.

[9] E.-S. Kim, D.-A. Lee, J. Yoo, The Scenario Generator for

Verifying the Correctness of FBDtoVerilog Translator, Korea

Information Processing Society, Vol.21, No.1, p. 599-602,

2014.

[10] PLCopen, PLCopen for efficiency in automation,

http://www.plcopen.org

[11] Synopsis, Synplify Pro, http://www.synopsys.com/Tools/

Implementation/FPGAImplementation/FPGASynthesis/Pages/

SynplifyPro.aspx

[12] Mentors Graphics, ModelSim, http://www.mentor.com/

products/fpga/model/

[13] E. Jee, S. Kim, S. Cha, I. Lee, Automated test coverage

measurement for reactor protection system software

implemented in function block diagram, Springer Berlin

Heidelberg, 2010.

