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1. Introduction

Detailed modeling of a reactor core requires huge
number of unknown variables which results large
memory size as well as long computing time.
Traditionally, spatial homonization, coarse mesh
analysis, and pin power reconstruction are used to find
detailed information such as peak power.

Today, we can use a computer cluster consist of a
few hundreds CPUs with reasonable budget. Such
computer system enables us to do detailed modeling of
reactor core. The detailed modeling will improve the
safety and the economics of a nuclear reactor by
eliminating un-necessary conservatism or missing
consideration. To take advantage of such a cluster
computer, efficient parallel algorithms must be
developed.

Mechanical structure analysis community has
studied the domain decomposition method to solve the
stress-strain equation using the finite element methods.
One of the most successful domain decomposition
method in terms of robustness is FETI-DP. [1], [2] We
have modified the original FETI-DP to solve the
eigenvalue problem for the multi-group diffusion
problem in previous study. [3]

In this study, we report the result of recent
modification to handle the three-dimensional sub-
domain partitioning, and the sub-domain multi-group
problem.

2. Recipe

2.1 Prescription of Algorithm
The multi-group diffusion eigenvalue problem is
written in following form.
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A general eigenvalue problem can be setup to solve
above diffusion equation by using appropriate method
such as finite element method. [4] After discretization,
the problem is written in following matrix form.

Ap = 1B¢
This problem is converted to the inverse eigenvalue
problem for faster and stable convergence.

AB= g

We have adopted Arnoldi method to find eigenvalue
in the Krylov subspace. [5] Householder projection
method [6] is adopted to find the orthogonal bases
which is required to find approximation vectors in the
Krylov subspace. [7]

Arnoldi iteration requires a product of the matrix for
eigenvalue problem or a solution of a linear system for
the inverse eigenvalue problem;

Ap =By

Above linear system is solved by FETI-DP parallel
algorithm. The global equation on the Lagrange
multiplier will be established by collecting results at
each subdomain. To solve the resulting linear system of
Lagrange multipliers, we adopted PBICGSTAB
(preconditioned bi conjugate gradient stabilized), which
use two residual vectors as presented at previous study.
[3] The FETI-DP procedure requires solution of the
multi-group equation in each subdomain. The
subdomain problem is solved by the PGMRES
(Preconditioned  Generalized Minimum Residual
method). [7]

2.2 PGMRES
The multi-group diffusion equation for each sub-
domain can be written as following.
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Above equation can be solved using the block
successive over-relaxation [8] as presented in previous
study. [3] The speed of bSOR method is sensitive to
optimum choice of relaxation parameter, ». However, it
is difficult to select optimum relaxation parameters for
each sub-domain. We adopted PGMRES (Pre-
conditioned Generalized Minimum Residual Method)
with a pre-conditioner based on the successive over-
relaxation in this study. The bSSOR(block symmetric
successive over-relaxation) pre-conditioner can be
expressed in following form.

M =(1-wED™)(D-oF)
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where D, E, and F are the diagonal, lower, and upper
sub-matrix of A, respectively. [7] The preconditioned
linear system is expressed in following form.

M ‘1A¢ =M™

Since M is product of a block lower triangular matrix
and a block upper matrix, inverse of pre-conditioner can
be easily computed with a forward sweep followed by a
backward sweep. Sub matrices of D are symmetric
positive definite when proper FEM discretization is
applied. Inversion of matrix D can be performed using
pre-computed Cholesky decomposed matrices.

Significant speed up was achieved with modification
to use PGMRES instead of bSOR which was used in
previous presentation. Dependency on the relaxation
parameter in the pre-conditioner is not sensivtive
compared with bSOR. We have fixed o as 1.5 in this
study.

2.3 Sub domain partitioning

FETI-DP algorithm requires conformal geometry at
the interface between sub-domains. The continuity of
flux and current at the sub-domain interfaces (dual
points) are satisfied through the Lagrange multipliers.
The flux continuity at the primal (cornor) point where
more than 3 subdomains meet, are satisfied by a global
equation on the primal point flux.

Total computing time is sum of 1) the CPU time
spent to solve the global equation for primal nodes and
the FETI iteration for dual nodes, 2) the longest CPU
time spent to solve the sub-domain-wise FEM for
internal points and dual points, and 3) the time required
to exchange the interface values with global equation.
So, we can choose following criteria on the sub-domain
partitioning to achieve minimum computing time with
given number of subdomains.

a. Number of internal and dual points are even,
b. Total number of dual points is small,
c. Total number of primal points is small.

This is a vertices-edges graph partitioning problem
with optimization criteria. Criterion a) is satisfied by
minimizing the suprenum of number of internal and
dual points of sub-domain. Criterions b) is satisfied by
minimizing the sum of the number of dual points. We
can impose appropriate weighting factor to define the
cost of segmentation. The graph partitioning problem is
an NP-complete problem which requires factorial times
large operations that results prohibitively long
computing time. Many heuristics approaches were
proposed to obtain reasonable solution. [9]

We used a graph partitioning software MeTIS. [10]
For conformal partitioning, the vertex of graph is
chosen as the finite element volume.

Figure 1 displays the volume elements (in 2D) and
the graph. Centers of triangles are used as the vertices
of a graph. Dual points are corresponding to the edges
of partitioned graph. In the example of Figure 1, 14
vertices are partitioned into 2 equal parts with 7 vertices
each. 3 edges are connected between the partitions.

Figure 1. Node graph (left: edge graph, right:
vertices connection graph)

A simple method to generate graph is based on
neighboring edges as shown in left side of Figure 1.
When there is flux zero boundary condition, the size of
sub domain matrix is significantly reduced. So, it may
be reasonable to count the number of matrix size, or the
non-zero connected edges as displayed on right side of
Figure 1.

Figure 2 displays a result of sub-domain partitioning
in 16 segment using MeTIS.

Figure 2. A sub-domain partition in 16 segments
(IAEA3D problem)

3. Results

IAEA3D benchmark problem is solved for our
experiment. [11] Basic mesh size of the IAEA3D
problem is 20 cm in planar and axial direction. We
studied 2x2x2 refined mesh with L2 bases function in
both directions. Total number of nodes is 36630
excluding the zero boundary points. For 2 group
problem, the global matrix has 73260 unknowns in 36
band structure.

We used a 24 node linux-cluster in this study. Each
node of the cluster is an Intel Core2 Quad CPU Q9650
which has four 3 GHz cores. Cluster nodes are
connected by standard Gigabit Ethernet.

3.1. Sub domain partitioning

The node graph is generated by taking centers of
triangular pipes as graphic vertices. Vertex adjacency is
determined by existence of common FEM base point
between neighboring triangular pipe as shown at the
right side of Figure 1. We adopted the vertex weight
method for partitioning the graph. Weight of a vertex is
taken as the number of nodes in the corresponding
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FEM base element excluding zero boundary node.
There are 9 nodes on L2 bases for a normal FEM
element (or graph vertex).
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Figure 3. Graph partition
Figure 3 displays the relative number of vertices
distribution resulting from the graph partitioning.
Evenness decreases as the number of partition increase.

About 10% deviation is observed for large number of
partitions.
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Figure 4. Primal and dual points

Figure 4 displays the number of primal and dual
points. Number of primal points which affects the size
of global equation, increases almost linearly as the
number of partitions is increasing. The number of dual
points increases nearly proportional to 2/3 power of the
number of partitions. Most of the communication
burden is due to exchange of the flux value at the dual
points, it is important to reduce the number of dual
points.

3.2. CPU time

Figure 5 displays the elapsed CPU time depending on
the partitioning. Two sets of test calculations in
different day. Reported CPU time is sum of the user
time and the system time. The CPU time varies
depending on the computing environment where the
other jobs are processed simultaneously. Total CPU

time is decreasing as the number of partition is
increasing as expected.

Total CPU time is sum of 1) the time for primal node
problem, 2) the maximum time used for sub-domain
problems, and 3) the time for MPI communication

between main process and sub-processes.
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Figure 5. CPU time

Figure 5 displays the maximum, the average, and the
minimum CPU time used by sub-domains. Those times
are decreasing as the number of partitions are increasing.
The gap between the total time and the maximum time
and is due to 1) and 3).
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Figure 6. CPU time used by primal point problem

Figure 6 displays the time used by primal node
problem to match global solution as specified by FETI.
As the number of primal points increases linearly with
number of partition, the computing time may increase
quadratically after a certain minimum. Comparing the
CPU time shown at Figure 6 with the number of primal
points shown at Figure 4, the CPU time rise at 46
partitions is due to increase of the number of primal
points at the partition. This situation may be improved
with better partitioning strategy.

Overall computing time decreases as number of
partition increases. However the overall CPU time may
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increases for large number of partitions due to increase
in the number of primal points.

Effect of MPI communication time is not observed in
this study.

3. Conclusion and Further Study

Modified FETI-DP algorithm has been successfully
applied for the eigenvalue problem of multi-group
neutron diffusion equation. The overall CPU time is
decreasing as number of sub-domains (partitions) is
increasing. However, there may be a limit in decrement
due to increment of the number of primal points will
increase the CPU time spent by the solution of the
global equation.

Even distribution of computational load (criterion a)
is important to achieve fast computation. The sub-
domain partition can be effectively performed using
suitable graph theory partition package such as MeTIS.
However actual CPU time is not only depending on the
size of the matrix but also depending on the spectral
radius matrix which is, in turn, dependent on the region-
wise diffusion coefficients. Better strategy can be
developed for computational load balancing of sub-
domains considering the neutron cross-section such as
diffusion coefficient.
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