
Transactions of the Korean Nuclear Society Autumn Meeting 
Pyeongchang, Korea, October 30-31, 2014 

 
 

Incorporation of Anisotropic Scattering in nTRACER 
 

Min Ryu, Yeon Sang Jung, Chang Hyun Lim and Han Gyu Joo ∗ 
Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-744, Korea 

*Corresponding author: joohan@snu.ac.kr 
 

1. Introduction 
 

Proper treatment of anisotropic scattering is one of 
the major issues in developing Method of Characteristic 
(MOC) codes. As the typical method, the isotropic 
scattering scheme with the transport-corrected 
scattering cross section is commonly used. The 
transport-corrected scattering cross section generated 
with out-scattering conservation yield good enough 
solutions in most circumstances. However, this 
isotropic treatment with out-scattering based transport 
correction [1] is not desirable particularly when there 
appear high neutron currents due to a strong absorber or 
the large leakage near the core periphery. Instead of the 
out-scattering based transport correction, the in-
scattering transport correction [1] can be used or an 
explicit treatment of anisotropic scattering with angular 
flux moments can be remedies in such cases. 

 In the direct whole core transport code developed at 
Seoul National University, nTRACER [2], only out-
scattering based isotropic scattering treatment was 
available and degradation of accuracy was noticed 
while solving the recent highly detailed and realistic 
pressurized water reactor (PWR) benchmark problems, 
namely, the BEAVRS[3] and the VERA[4] benchmarks 
which were proposed by the Computational Reactor 
Physics Group (CRPG) of MIT and the CASL 
(Consortium for Advanced Simulation of Light water 
reactors) group at the Oak Ridge National Laboratory 
(ORNL). This work is to implement the anisotropic 
scatter treatment capability in nTRACER and also to 
generate properly the in-scattering based transport cross 
section, and then to examine the performance of the 
improved anisotropic scattering treatments. 
 

2. In-scattering Transport Correction 
 

The out-scattering based transport correction is to 
define the transport cross section as follows: 

 (1)
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This definition comes from the inconsistent P1 
approximation that equates the in-scattering source and 
out-scattering source for a group. For more faithful 
generation of transport cross section without employing 
that approximation, let us first consider the  equation 
for the first moment in a one-dimensional geometry as: 

 (1)
, s,

1 ( ) ( ) ( )
3 g t g g g g g

g
z J z J z

z
φ ′ ′→

′

∂
+ Σ = Σ

∂ ∑  . (2) 

By introducing the Fick’s law that involves the group 
diffusion coefficient which is assumed to be unknown 
in the following derivation, Eq. (2) can be rewritten as 
follows: 
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Eq. (3) can be integrated in an arbitrary interval to 
yield: 
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Eq. (4) represents a system of linear equation that can 
be solved for Dg for a given spectrum. A typical 
spectrum in a PWR can be used in Eq. (4) and the 
resulting solution for Dg can be used to determine the 
transport cross section as: 
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3. MOC with high order scattering 

 
In the typical MOC calculation, scattering sources 

are treated isotropic and thus only the scalar flux needs 
to be stored at each flat source region. However, with 
the high order scattering source expansion method, 
higher order scattering moments are required. These 
higher moments are explicitly derived from the 
expansion of angular flux in terms of the spherical 
harmonics given as:  
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The high order flux moment is defined as follows: 
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The 0-th order scattering source can then be expressed 
as follows: 
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The higher order scattering source can also be derived 
as the following up to the third order in terms of the 
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higher order moments that should be calculated during 
the ray tracing calculation employing the MOC: 

 

1-st order 
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2-nd order 
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3-rd order 
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Note that the terms containing the trigonometric 
function need to be multiplied to the angular flux for a 
certain angle and then accumulated to define the proper 
moment during the ray tracing calculation and this 
calculation induces a significant increase in the 
computing time. 

4. Examination of Effectiveness 
 

In order to examine the effectiveness of the 
anisotropic scattering treatments, the upgraded 
nTRACER was applied to the VERA and the BEAVRS 
benchmark problems. nTRACER’s own 47-group cross 
section library generated from the ENDF-B/VII data 
were used and contains the in-scattering based transport 
cross section generated for primary light nuclides such 
as H-1, B-10 and O-16 were used. The ray spacing used 
in nTRACER is 0.05 cm except for the Integral Fuel 
Burnable Absorber (IFBA) cases for which it is set to 
0.01 cm. The numbers of azimuthal angles and 
optimum polar angles per octant of the solid angle 
sphere are 12 and 4 for all the cases except for the 
IFBA cases having 16 azimuthal angles. 
 
3.1. VERA benchmark Analysis 
 

For the VERA benchmark problem, the reference 
solutions obtained by the KENO-VI Monte Carlo (MC) 
code are given. There are several kinds of two-
dimensional (2D) problems and they are used in the 
following examination of various scattering treatment 
cases.  
 
3.1.1 2D Lattice problems 
 

There are a total of 17 different kinds of 2D lattice 
problems in the VERA benchmark. These assemblies 
are standard Westinghouse 17x17 assemblies. As 
shown in Table I, higher order scattering results such as 
P1, P2 and P3 show better performance in the case of 
no poison lattice. P2 gives more accurate results than 
P1 and the k-effective values and the pin power 
distributions of P2 are almost the same as those of P3. 
 

Table I. VERA 2D lattices with no poison 

No Descrip- 
Tion Code k-effective ρ∆  

Pin 
Max 
Error 

2A 
None 
565K/565K 
0.743 g/cc 

KENO-VI  1.18218(3) - - 
Out-scat. 1.18089 -92 0.21% 
In-scat. 1.18091 -91 0.33% 
P1 1.18125 -66 0.17% 
P2 1.18149 -49 0.16% 
P3 1.18146 -51 0.16% 

2B 
None 
600K/600K 
0.661 g/cc 

KENO-VI  1.18336(3) - - 
Out-scat. 1.18252 -60 0.21% 
In-scat. 1.18251 -61 0.33% 
P1 1.18265 -51 0.18% 
P2 1.18290 -33 0.18% 
P3 1.18287 -35 0.18% 

2C 
None 
900K/600K 
0.661 g/cc 

KENO-VI  1.17375(3) - - 
Out-scat. 1.17260 -84 0.17% 
In-scat. 1.17261 -83 0.29% 
P1 1.17268 -78 0.15% 
P2 1.17295 -58 0.14% 
P3 1.17286 -65 0.14% 

2D 
None 
1200K/600K 
0.661 g/cc 

KENO-VI  1.16559(3) - - 
Out-scat. 1.16416 -105 0.20% 
In-scat. 1.16417 -105 0.33% 
P1 1.16419 -103 0.17% 
P2 1.16447 -83 0.17% 
P3 1.16432 -94 0.17% 

2I IT KENO-VI  1.17992(2) - - 
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600K/600K 
0.661 g/cc 

Out-scat. 1.17868 -89 0.22% 
In-scatt. 1.17868 -89 0.34% 
P1 1.17904 -63 0.17% 
P2 1.17926 -47 0.17% 
P3 1.17923 -49 0.17% 

 
Table II shows the results of the four cases of Pyrex 

shimmed problems. On the contrary to the prior case, 
the out-scattering treatment seems to give the best 
solution, but this is due to some error cancelation 
effects. The Pn cases show consistently better results as 
the order increases revealing the general trend of the 
zigzag variation in the error as the order increases.  

 
Table II. VERA 2D lattices with Pyrex 

No Descrip- 
Tion Code k-effective ρ∆  

Pin 
Max 
Error 

2E 12 Pyrex 

KENO-VI  1.06963(2) - - 
Out-scat. 1.06922 -36 0.21% 
In-scat. 1.06847 -101 0.22% 
P1 1.06828 -118 0.26% 
P2 1.06881 -71 0.22% 
P3 1.06876 -76 0.22% 

2F 24 Pyrex 

KENO-VI  0.97602(3) - - 
Out-scat. 0.97610 9 0.24% 
In-scat. 0.97486 -122 0.48% 
P1 0.97452 -157 0.30% 
P2 0.97522 -84 0.30% 
P3 0.97515 -91 0.29% 

2J IT + 
24 Pyrex 

KENO-VI  0.97519(3) - - 
Out-scat. 0.97535 17 0.17% 
In-scat. 0.97411 -114 0.36% 
P1 0.97377 -150 0.20% 
P2 0.97448 -75 0.22% 
P3 0.97440 -83 0.21% 

2K 
Radially 
Zoned + 
24 Pyrex 

KENO-VI  1.02006(3) - - 
Out-scat. 1.02031 24 0.22% 
In-scat. 1.01912 -91 0.43% 
P1 1.01882 -120 0.27% 
P2 1.01952 -52 0.25% 
P3 1.01944 -60 0.25% 

 
There are two control rod (CR) insertion cases in the 

second problem set. The neutron flux distribution in the 
assembly changes drastically because of the high 
absorbers. Due to the large neutron currents formed 
near the absorber, the out-scattering based transport 
correction yields very large errors in the eigenvalue as 
shown in Table III. The improvement with the high 
order scattering treatment is remarkable both in Table 
III and Fig. 1. Although in-scattering based transport 
correction improves the eigenvalue significantly, it is 
noted that the power distribution error is degraded 
slightly. 

 
Table III. VERA benchmark – 2D Lattice with CR 

No Descrip- 
Tion Code k-effective ρ∆  

Pin 
Max 
Error 

2G 
24 AIC 
(Ag-In-
Cd) 

KENO-VI  0.84770(3) - - 
Out-scattering 0.85085 437 0.40% 
In-scattering 0.84860 126 0.91% 
P1 0.84557 -296 0.27% 
P2 0.84777 10 0.27% 
P3 0.84765 -6 0.28% 

2H 24 B4C 

KENO-VI  0.78822(3) - - 
Out-scattering 0.79295 760 0.43% 
In-scattering 0.78793 -47 1.05% 
P1 0.78547 -444 0.39% 
P2 0.78855 53 0.35% 
P3 0.78847 40 0.38% 

 

 
Fig. 1. Pin power distribution of the 2H case and 

relative errors with various transport correction and the 
P2 MOC method 

 
As shown in Table IV and V which are for the cases 

with IFBA, gadolinium and Zircarloy grids, high order 
scattering treatment give the best accuracy, but not so 
obviously as the CR cases. Fig. 2 summarized the 
reactivity errors for the assembly cases. 

 
Table IV. VERA benchmark – 2D Lattice with IFBA 

No Descrip- 
Tion Code k-effective ρ∆  

Pin 
Max 
Error 

2L 80 IFBA 

KENO-VI  1.01892(2) - - 
Out-scat. 1.01654 -229 0.29% 
In-scat. 1.01625 -257 0.29% 
P1 1.01681 -203 0.17% 
P2 1.01703 -182 0.14% 
P3 1.01700 -185 0.14% 

2M 128 IFBA 

KENO-VI  0.93880(3) - - 
Out-scat. 0.93599 -319 0.30% 
In-scat. 0.93565 -358 0.33% 
P1 0.93636 -277 0.15% 
P2 0.93655 -255 0.12% 
P3 0.93652 -259 0.12% 

2N 104 IFBA 
20 WABA 

KENO-VI  0.86962(3) - - 
Out-scat. 0.86881 -107 0.38% 
In-scat. 0.86755 -274 0.31% 
P1 0.86796 -219 0.18% 
P2 0.86843 -157 0.14% 
P3 0.86838 -164 0.14% 

 
Table V. VERA benchmark – 2D Lattice with Gd and 
Zircarloy Grid 

No Descrip- 
Tion Code k-effective ρ∆  

Pin 
Max 
Error 

2O 12 Gd 

KENO-VI  1.04773(2) - - 
Out-scat. 1.04907 122 5.43% 
In-scat. 1.04822 45 5.84% 
P1 1.04741 -29 6.39% 
P2 1.04813 37 5.98% 
P3 1.04806 30 6.02% 

2P 24 Gd 

KENO-VI  0.92741(2) - - 
Out-scat. 0.92895 179 5.33% 
In-scat. 0.92782 48 5.66% 
P1 0.92616 -146 6.27% 
P2 0.92718 -27 5.86% 
P3 0.92707 -40 5.90% 

2Q Zir Grid KENO-VI  1.17194(2) - - 
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Out-scat. 1.17157 -27 0.36% 
In-scat. 1.17154 -29 0.42% 
P1 1.17188 -4 0.39% 
P2 1.17215 15 0.38% 
P3 1.17212 13 0.38% 

 

 
Fig. 2. k-effective errors of each method for the VERA 

2D lattice problems 
 

3.1.2 2D 3x3 mini-core 
 

In the VERA 3x3 mini-core problem with the 
reflective boundary condition, the center assembly can 
have three control rod insertion conditions: A) with no 
control rod, B) AIC control rod in, C) B4C control rod 
in. Fig. 3 shows the core configuration of the 3x3 mini-
core. As shown in Table VI, the improvement with the 
higher order scattering and the in-scattering treatment is 
quite significant in both reactivity and power 
distribution. The in-scattering correction improves the 
power distribution as well in these 3x3 mini-core cases. 

 

 
Fig. 3. Configuration of VERA 2D 3x3 mini-core 

 
Table VI. VERA benchmark – 2D 3x3 mini-core 

No Descrip- 
tion Code k-effective ρ∆  

Pin 
Max 
Error 

Rod 
Worth & 
Error 

4A None 

KENO-VI  1.01024(1) - - 

- 

Out-scat. 1.00905 -117 0.47% 
In-scat. 1.00847 -174 0.73% 
P1 1.00862 -159 0.37% 
P2 1.00903 -119 0.33% 
P3 1.00898 -123 0.33% 

4B AIC 

KENO-VI  0.98345(1) - - 2697(2) 
Out-scat. 0.98241 -107 2.01% -9 
In-scat. 0.98194 -156 1.41% -18 
P1 0.98168 -183 0.41% 24 
P2 0.98229 -120 0.45% 1 
P3 0.98224 -125 0.62% 1 

4C B4C 

KENO-VI  0.98029(1) - - 3024(2) 
Out-scat. 0.97918 -116 2.38% -1 
In-scat. 0.97870 -166 1.59% -8 
P1 0.97847 -190 0.42% 31 
P2 0.97914 -120 0.59% 1 
P3 0.97909 -125 0.62% 2 

 

 
Fig. 4. Errors of pin power distribution of the 4C case 
with various transport corrections, P1 and P2 MOC 

method 
 

3.1.3 2D quarter core 
 

The 2D quarter core cases are similar to the previous 
3x3 mini-core cases in that they are HZP problems with 
three different control rod conditions. In these cases, 
however, there is large neutron leakage so the 
anisotropic effect near problem boundary is not 
negligible. As shown in Table VII, Figs. 5 and 6, the 
out-scattering transport correction involves a significant 
radial power tilt that causes a very large power error at 
the core center. The higher order scattering and the in-
scattering correction are very much effective in these 
core cases. 

 
Table VII. VERA benchmark – 2D quarter core 

No Descrip- 
tion Code k-effective ρ∆  

Asy 
Max 
Error 

Rod 
Worth & 
Error 

5A None 

KENO-VI  1.00409(1) - - 

- 

Out-scat. 1.00185 -222 5.40% 
In-scat. 1.00248 -159 1.57% 
P1 1.00220 -187 1.19% 
P2 1.00272 -136 0.70% 
P3 1.00267 -141 0.72% 

5B AIC 

KENO-VI  0.99150(1) - - 1265(1) 
Out-scat. 0.98905 -249 9.57% 27 
In-scat. 0.98980 -173 1.52% 13 
P1 0.98954 -187 1.72% 12 
P2 0.99018 -134 1.10% -2 
P3 0.99013 -139 1.11% -1 

5C B4C 

KENO-VI  0.98029(1) - - 1394(1) 
Out-scat. 0.98767 -261 10.01% 39 
In-scat. 0.98849 -177 1.52% 18 
P1 0.98818 -209 1.95% 22 
P2 0.98885 -141 1.28% 5 
P3 0.98880 -146 1.30% 5 
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Fig. 5. Reference assembly power and relative error 
distributions of each method for the VERA 5A case 

(ARO) 
 

 
Fig. 6. Reference assembly power and relative error 
distributions of each method for the VERA 5C case 

(Bank D with B4C inserted) 
 

 

 
Fig. 7. Pin power distribution with P2 MOC and 

relative differences between each method and P2 for the 
VERA 5A case 

 

 
Fig. 8. Pin power distribution with P2 MOC and 

relative differences between each method and P2 for the 
VERA 5C case 

 
3.2. BEAVRS benchmark 
 

In the BEAVRS benchmark problem, the power 
distribution information was obtained by in-core 
detector measurements. As in the VERA 2D problems, 
the 3D quarter core problem also has large neutron 
leakage so that the anisotropic effect near the core 
baffle is not negligible. As shown in Table VIII and Fig. 
9, the out-scattering transport correction also involves a 
significant radial power tilt similarly to the VERA 2D 
quarter cores. The high order scattering and the in-flow 
scattering correction improve the radial assembly power 
distribution quite noticeably as well in this BEAVRS 
core by removing the power tilt resulting in an over-
estimation at the interior when the out-scattering based 
transport cross sections are used. Due to the less 
leakage obtained with the better anisotropic scattering 
treatment, the core k-effective increases by about 110 
pcm. Conversely, this indicates that out-scattering 
based cross sections induces too much leakage. This is 
confirmed by the lower transport cross sections of 
hydrogen at the high energy range in Fig. 10. The 
smaller cross sections for high energy neutrons would 
lead to large mean free paths that will cause more 
leakage. The higher leakage would induce the radial 
power tilt in such a way that the power is over-
predicted in the interior region. 

As far as the computing time is concerned, however, 
the P2 calculation requires a significantly more 
computing time than the in-scattering based calculation 
time that is essentially the same as the out-scattering 
based one. With 168 computing nodes, the time for this 
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BEAVRS calculation with P2 was about 6 hours 
whereas it was about 2 hours and 45 minutes with the 
isotropic scattering. Since the in-scattering based results 
are not so bad compared with the P2 calculation, it 
might be beneficial to perform the in-scattering based 
transport calculation in most calculations. 

 
Table. VIII BEAVRS Benchmark 3D HZP k-effective 

Methods Out-scattering In-scattering P2 
k-effective 0.99967 1.00082 1.00078  

Asy. RMS error 3.40% 2.84% 2.75% 

 

 
Fig. 9. BEAVRS measured assembly in-core detector 

signals and relative errors of each method 
 

 
Fig. 10. Transport cross sections relative to the total 

cross sections for hydrogen 
 

5. Conclusions 
 

The higher order anisotropic scattering treatment 
capabilities upto the third order were implemented 
successfully in the nTRACER direct whole core 
transport code. In addition, a unique method to generate 
the in-scattering based transport cross sections utilizing 
an assumed representative core flux spectrum was 
developed and implemented. It was demonstrated by a 
serious of the VERA benchmark calculations that the 
improved anisotropic treatments can resolve the 

significant error associated with the isotropic scattering 
treatment with the out-scattering based transport 
correction. Particularly, the large reactivity error greater 
than 500 pcm for the control rodded assembly lattices 
and the large over-prediction of the assembly power in 
the core interior by more than 5% can be removed 
effectively with these improvements. The cost of about 
two-time longer computing times with the P2 treatment 
can be effectively offset by the use of in-scattering 
based transport cross sections. However, it is desired to 
establish more efficient higher order scattering 
treatment module in order not to use the isotropic 
scattering treatment at all to assure better accuracy in all 
the cases. 
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